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By coupling synoptic data from a basin-wide assessment of stream-
water chemistry with network-based geostatistical analysis, we
show that spatial processes differentially affect biogeochemical
condition and pattern across a headwater stream network. We
analyzed a high-resolution dataset consisting of 664 water samples
collected every 100 m throughout 32 tributaries in an entire
fifth-order stream network. These samples were analyzed for
an exhaustive suite of chemical constituents. The fine grain and
broad extent of this study design allowed us to quantify spatial
patterns over a range of scales by using empirical semivario-
grams that explicitly incorporated network topology. Here, we
show that spatial structure, as determined by the characteristic
shape of the semivariograms, differed both among chemical
constituents and by spatial relationship (flow-connected, flow-
unconnected, or Euclidean). Spatial structure was apparent at
either a single scale or at multiple nested scales, suggesting
separate processes operating simultaneously within the stream
network and surrounding terrestrial landscape. Expected pat-
terns of spatial dependence for flow-connected relationships (e.g.,
increasing homogeneity with downstream distance) occurred for
some chemical constituents (e.g., dissolved organic carbon, sulfate,
and aluminum) but not for others (e.g., nitrate, sodium). By
comparing semivariograms for the different chemical constitu-
ents and spatial relationships, we were able to separate effects
on streamwater chemistry of (i ) fine-scale versus broad-scale
processes and (ii ) in-stream processes versus landscape con-
trols. These findings provide insight on the hierarchical scaling
of local, longitudinal, and landscape processes that drive bio-
geochemical patterns in stream networks.
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Spatial heterogeneity of ecosystems has been a focus of landscape
ecology for more than two decades, but the linkages be-

tween these patterns and underlying processes are still poorly
understood (1–3). Quantifying these pattern-process links is largely
a problem of scale. Specifically, it is difficult to perform experi-
ments at the landscape scale and measure responses over the range
of spatial and temporal scales commensurate with the processes of
interest (4, 5).
This problem of scale limits our understanding of both ter-

restrial and freshwater ecosystems. Effects of landscape pattern
on ecosystem response can be evaluated at stream outlets by
using biogeochemical signals that integrate physical and bi-
ological conditions of the catchment (6, 7). However, the spatial
complexity of biogeochemical patterns and processes within
stream networks has not been fully investigated because it is
difficult to quantify such patterns at a grain and extent sufficient
for examining spatial heterogeneity and processes across scales
(8). Quantifying this variability and linking fine-scale and broad-
scale patterns and processes within the branched topology of
stream networks is essential for understanding aquatic ecosystem

function and aquatic-terrestrial ecosystem connections, but requires
new conceptual and methodological approaches (9, 10).
Major advances in understanding biogeochemical fluxes and

cycles in rivers and streams have resulted from increased rec-
ognition of how spatial heterogeneity and network topology re-
flect land–water interactions (e.g., refs. 11 and 12). However, our
understanding of biogeochemical processes in stream networks is
still limited to small-scale experiments (e.g., ref. 13), often with
limited spatial extent or replication, and large-scale correlative
models (14). Fine-grained observations at intermediate scales
(e.g., 1–10 km2) may be especially powerful for advancing un-
derstanding of complex aquatic and terrestrial effects on bio-
geochemical fluxes throughout stream networks (15–17).
Studies quantifying streamwater chemistry in a spatially in-

tensive manner at intermediate scales have revealed a high de-
gree of spatial structure that cannot be explained by current
models of biogeochemical processes (11, 18). Specifically, these
results show that traditional, continuum-based models—where
conditions are regulated primarily by upstream processes and,
thus, exhibit gradual downstream gradients—are insufficient for
describing the true spatial complexity of biogeochemical patterns
and processes in stream networks. This unfamiliar ground be-
tween fine and coarse scales of understanding is the crux of field-
based science, inwhich the “preferredmodes of explanation. . .appear
to be systematically related to customary human scales of perception
of the world” (19). Likewise, obtaining a bird’s-eye view of
biogeochemical patterns at fine to coarse scales may be crucial
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for advancing ecosystem science and explaining the spatial
complexity of streamwater chemistry within landscapes.
Recent developments in geostatistical modeling provide

a valuable new perspective on stream networks by revealing
hydrological and ecological patterns in a spatially continuous
manner (20, 21). To date, the relatively few sample points required
to generate spatial interpolations have fueled the popularity of
these models. However, the increasing use of network-based geo-
statistical techniques underscores a need to understand the pro-
cesses from which these patterns arise or, more broadly, to
elucidate ecosystem processes from spatial patterns and develop
new hypotheses about system function (22). Recent theoretical
and empirical approaches show that inferring processes from
spatial patterns is possible by using empirical semivariograms
and synoptic sampling (e.g., ref. 23). Specifically, the combination
of spatial analysis and synoptic sampling allows one to visualize
how patterns occur across different scales, while providing the
empirical foundation needed to identify the processes that give
rise to those patterns. Geostatistics have only recently been used
to describe spatial patterns throughout stream networks (24, 25),
although these tools have long been used to quantify spatial
structure in terrestrial ecology (26).
We apply geostatistical techniques to an unusually high-

resolution synoptic dataset of streamwater chemistry collected
throughout the Hubbard Brook Valley in New Hampshire to ex-
plore the spatial structure of biogeochemical patterns at multiple
scales (18). The dataset consisted of 664 water samples collected
over a 3-mo period every 100 m throughout all 32 tributaries of
the 3,600-ha, fifth-order stream network of the Hubbard Brook
Valley. We show previously undescribed patterns of spatial de-
pendence based on three spatial relationships, revealing bio-
geochemical determinants occurring across scales, both within
the stream network and surrounding catchment. Stream network
patterns were defined by two spatial relationships: flow con-
nected and flow unconnected (in the sense of refs. 20 and 21). The
straight-line distance between two points defines Euclidean rela-
tionships. Flow-connected and unconnected network relationships
describe distances along the stream network and were considered
“connected” if water flows from one site to another. Thus, all points
downstream of other points on the stream network were considered
connected, but points upstream of tributary junctions that do not
share flow were considered “unconnected.”
Empirical semivariograms based on these three spatial rela-

tionships suggest the importance of different drivers of spatial
variability in streamwater chemistry at multiple scales, e.g., fine
(<1,500 m) and broad scales (>3,000 m) (Fig. 1). For example,
semivariograms of flow-connected relationships indicate whether
downstream flow and longitudinal transport exert a dominant
control on streamwater chemistry by showing the level of auto-
correlation between flow-connected samples. Likewise, semivario-
grams of flow-unconnected relationships provide information about
the similarity/dissimilarity of tributary branches due to influences
of landscape properties (e.g., soils or geology). Semivariograms
of streamwater chemistry using Euclidean relationships reveal
interactions or lateral connectivity between the stream network
and the landscape. Therefore, both Euclidean and flow-un-
connected network relationships provide information on how
the landscape influences patterns of streamwater chemistry
within a single catchment/network, whereas a flow-connected
relationship largely describes the effect of hydrologic trans-
port and upstream spatial dependence.
Extensive work in the Hubbard Brook Ecosystem Study (HBES)

over the last five decades provides the temporal context for
understanding biogeochemical processes and landscape change
through ecosystem change revealed by long-term research (27,
28). The current study aims to provide a spatial context (29) for
interpreting how biogeochemical patterns observed from sparse
fixed sites (e.g., outlets of experimental watersheds) fit within the

larger stream network. We expect spatial dependence of stream-
water chemistry to be structured by flow directionality and network
topology, especially for constituents that are not strongly bio-
logically cycled in headwater streams (e.g., base cations, Cl−, SO2-

4 ).
However, patchiness longitudinally in the stream network and
across the landscape (i.e., by Euclidean distances) may arise
because of the local influences of landscape features such as
seeps and springs, and variation in vegetation, soil, and geologic
materials. Our objectives were to (i) quantify spatial heteroge-
neity in streamwater chemistry at multiple scales within the
stream network, (ii) compare patterns of streamwater chemistry
by using different spatial relationships within the stream net-
work and across the landscape (i.e., using network and Euclidean
relationships), and (iii) evaluate this approach for linking bio-
geochemical patterns and processes by identifying potential
drivers of spatial patterns in streamwater chemistry that bridge
scales from tributaries, to the main stem, and throughout the
entire Hubbard Brook Valley.

Results
Spatial Structuring in Streamwater Chemistry. Streamwater chem-
istry patterns throughout the Hubbard Brook Valley exhibited
spatial patchiness and gradients at multiple scales (see Fig. S1
for a complete set of distribution maps for all chemical con-
stituents). However, it is difficult to systematically compare
these patterns visually because of the spatial complexity of the
data. For example, patterns of dissolved organic carbon (DOC),
sodium, dissolved silica, and specific conductance were visibly
different (Fig. 2), but the extent and typology of these differences
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Fig. 1. Hypothetical semivariograms and associated maps depicting repre-
sentative spatial patterns of water chemistry in a stream network. Non-
structured spatial pattern (i.e., uniform or random) (A) is indicated in the
semivariogram by no change in semivariance (γ) (y axis) with increasing
distance (d) between neighbors (x axis), as is graphically depicted by the
uniform line color in the associated network map. In the example shown (A),
γ = 0 for a uniform, nonstructured spatial pattern. Other potential semi-
variograms and associated network patterns include spatial dependence at
a broad-scale with a gradient symbolized in the network map by changes in
line color from the upper left (blue) to the lower right (red) of the stream
network (B), fine-scale patchiness or spatial dependence indicated in the
network map as ”hotspots” (C), and nested heterogeneity reflecting a
combination of fine-scale patchiness imbedded within a broad-scale gradi-
ent (D) (in the sense of ref. 26). Characteristics of the semivariogram (C) are
the asymptote or “sill,” which is roughly equivalent to the total population
variance; the variance discontinuity at the y intercept or “nugget,” which
represents variance due to sampling error and/or spatial dependence at
distance intervals not explicitly sampled; and the “range,” which defines the
distance or scale over which spatial dependence is expressed. Beyond this
range, in a nonnested structure, points are spatially independent of one
another or uncorrelated. Nested semivariograms are hierarchical structures,
each characterized by its own range.
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cannot be quantified based on visual inspection alone. In con-
trast, analysis with empirical semivariograms revealed a high
degree of spatial structuring in streamwater chemistry, as in-
dicated by the overall shape of the semivariograms (Fig. 3 and
Fig. S2). Specifically, some of the semivariograms showed spatial
structure at predominantly one scale of variation (<1,500 m)
(compare Fig. 1C and flow-connected semivariograms in Fig. 3),
whereas other semivariograms varied substantially among spatial
relationships and exhibited spatial structure at multiple scales
(compare Fig. 1D and Fig. 3). Semivariograms of the 16 chemical
constituents exhibited several of the theoretical spatial structures
described in Fig. 1 (Table 1, Fig. 3, and Fig. S2): (i) nonstructured,
or poorly defined structure (NH+

4 , NO−
3 , PO

3�
4 ; compare to Fig. 1A);

(ii) single-scale structure (many examples: compare to Fig. 1C);
and (iii) nested structure (many examples: compare to Fig. 1D).
Scales of variation in streamwater chemistry ranged from 500 to
>6,000 m for the variables that showed spatial structure (Table 1).
The finest and broadest scales of variation were associated with
semivariograms of the nested type, for which Euclidean and flow-
unconnected relationships had the finest scales of variation, and
flow-unconnected relationships had the broadest scales of varia-
tion. Scales of variation for flow-connected network relationships
were less variable compared with the other spatial relationships.

Effects of Network Connectivity on Patterns of Spatial Dependence.
Patterns of spatial dependence in streamwater chemistry varied
not only among chemical constituents but also depending on how
connectivity, or relationships among sample points, was defined
in space. For example, semivariograms of specific conduc-
tance differed in shape and overall variance (i.e., height of the
curve with respect to the y axis) based on the way the spatial
relationship was calculated between sample points (i.e., flow-
connected, flow-unconnected, and Euclidean spatial relation-
ships) (Fig. 3D). Specifically, the shape of the flow-connected
semivariogram of specific conductance indicated the pres-
ence of spatial structure at one scale (Fig. 3D), whereas the

semivariogram of flow-unconnected relationships exhibited
pronounced patterns associated with nested spatial structure
at two scales. The semivariogram based on the Euclidean spa-
tial relationship also exhibited a nested pattern, but was not as
clearly defined as the flow-unconnected semivariogram. Over-
all, variance was generally highest for the semivariogram based
on Euclidean relationships and lowest for the flow-connected
semivariograms.
The differences described above for semivariograms of spe-

cific conductance generally applied to the majority of chemical
constituents that exhibited spatial structure [i.e., monomeric
aluminum (Alm), Cl

−, dissolved inorganic carbon (DIC), DOC,
K+, dissolved silica, and SO2-

4 ) (Fig. S2), but there were some
notable exceptions. For example, semivariograms of acid-neu-
tralizing capacity (ANC), Ca2+, and K+ were also similar, but
only for flow-connected and Euclidean spatial relationships with
distances less than approximately 4,500 m (Fig. S2). Semivario-
grams of Mg2+ and Na+ exhibited an analogous pattern but at
shorter distances (∼1,500 m). The nugget value (i.e., disconti-
nuity at the origin) (e.g., defined in Fig. 1C) of semivariograms
based on Euclidean and flow-connected relationships were close
to zero for all chemical constituents except for DIC (Fig. 3 and
Fig. S2), whereas nugget-variance for flow-unconnected semi-
variograms were substantially greater than zero for all chemical
constituents except Alm and K+.

Discussion
Understanding controls on spatial patterns of streamwater chem-
istry and developing tools for predicting spatial variation of stream
chemistry in headwaters is important for managing water quality in
downstream systems. Headwater streams comprise the vast majority
of stream length in watersheds (30) and perform critical functions
for downstream ecosystems, but are still considered aqua incognita
in hydrology and ecology (31, 32). We found complex variability
in spatial patterns of streamwater chemistry (multiscale struc-
ture) across the Hubbard Brook Valley, suggesting that different
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Fig. 2. Spatial patterns of sodium (Na+; mg/L) (A), dissolved silica (DSi; reported as SiO2 mg/L) (B), dissolved organic carbon (DOC; mg/L) (C), and specific con-
ductance (SC; μS/cm) (D) derived from sampling streamwater chemistry at 664 locations throughout the Hubbard Brook Valley, NH, during October–December 2001.
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processes are affecting streamwater chemistry at different scales
and with different spatial relationships. Our results suggest that
streamwater chemistry is more complex than the expected pat-
tern of a single scale of spatial autocorrelation (Fig. 1C) or in-
creasing homogeneity with downstream distance. There is both
fine-scale patchiness and broad-scale trend operating within the
stream network and across the landscape. These observations
may provide clues about how streams function and ultimately
lead to better models of aquatic and terrestrial ecosystem in-
teractions in stream networks. Furthermore, the spatial structure
of stream network chemistry that emerges from our analysis is
similar to patterns that have been observed in landscape ecology,
where both broad-scale gradients and fine-scale patchiness are
influenced by environmental attributes (33).
Semivariograms of water chemistry in the stream network of

the Hubbard Brook Valley revealed spatial structure at multiple
scales previously described only in unbranched stream sections
(11) or for a limited suite of chemical constituents examined at
much coarser scales (34). Other pioneering studies of stream
networks have examined spatial heterogeneity or developed
predictive models in stream networks (16, 35), but these studies
have been too coarse in grain (low resolution) to detect spatial
structure at scales ranging from hundreds to thousands of
meters. Our analysis of the shape and characteristics of semi-
variograms (Fig. 1) of water chemistry in a stream network
provide empirical support for three models of spatial structure

in stream networks (in the sense of ref. 26): (i) broad-scale
heterogeneity with few patches (Fig. 1B; e.g., the Euclidean
relationship of Na+, dissolved silica, and DIC); (ii) fine-scale
heterogeneity with many patches (Fig. 1C; e.g., flow-connected
K+, Cl−, DOC); and (iii) nested heterogeneity that contains
fine-scale patchiness and broad-scale heterogeneity (Fig. 1D;
e.g., flow-unconnected H+, Alm, DOC).
The different spatial relationships permit the examination of

heterogeneity dominated by landscape versus stream network
processes. Euclidean and flow-unconnected network relation-
ships were associated with the nested type of heterogeneity in-
dicative of landscape influences occurring over multiple spatial
scales, such as soil, geology, and vegetation controls on the
chemistry of water sources. In contrast, flow-connected rela-
tionships were entirely (with the exception of Na+) of the
single-scale type, suggesting that similarity at large stream dis-
tances in the network was largely controlled by channel-mediated
transport and groundwater flow accumulation, which seemed to
stabilize the variance of all chemical constituents at approximately
2,000-m separation distance. This range among the semivario-
grams for flow-connected relationships provides an indication of
where the hydrologic control on variability begins to overwhelm
the patchiness at the fine scale (<2,000 m). As one would expect,
hydrologic transport and longitudinal gains of groundwater were
the main drivers of the spatial pattern among most of the solutes.
At Hubbard Brook, solute chemistry is relatively constant tem-
porally compared with discharge, which may suggest general per-
sistence in these spatial relationships (17).
Euclidean and flow-unconnected semivariograms exhibit higher

variance, spatial dependence at broader scales, and multiple
structures (single and nested) compared with flow-connected

0 2000 4000 6000
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

γ(
d)

Na+

Distance (m)
0 2000 4000 6000

0

1

2

3

4

5
DSi

Distance (m)

0 2000 4000 6000
0

2

4

6
DOC

γ(
d)

Distance (m)
0 2000 4000 6000

0

10

20

30

40

Distance (m)

SC

Euclidean

Flow−connected

Flow−unconnected

A B

C D

Fig. 3. Empirical semivariograms for sodium (Na+; mg/L) (A), dissolved silica
(DSi; reported as SiO2 mg/L) (B), dissolved organic carbon (DOC; mg/L) (C),
and specific conductance (SC; μS/cm) (D) based on Euclidian, flow-con-
nected, and flow-unconnected spatial relationships (d) in the Hubbard
Brook Valley. Visually estimated ranges (Table 1) for Euclidean (E) (yellow
and black line), flow-connected (FC) (orange), and flow-unconnected (FU)
(blue) relationships are indicated with vertical lines. Symbols with lighter
color shades indicate semivariance estimates based on <100 pairs of points.

Table 1. Characteristics of empirical semivariograms for
streamwater chemistry based on Euclidean, flow-connected, and
flow-unconnected spatial relationships in the Hubbard Brook
Valley

Euclidean
relationship

Flow-connected
network

relationship
Flow-unconnected

network relationship

Solute Type Scale, m Type Scale, m Type Scale, m

H+ Single 2,300 — Single 1,500 Nested 900 4,500
Ca2+ Nested 1,000 ? Single 1,800 Single 2,500 —

Mg2+ Nested 1,100 3,700 Single 1,700 Nested 2,600 ?
Na+ Single ? — Nested 1,600 Nested 2,600 ?
K+ Nested 1,200 5,400 Single 1,700 Single 1,800 —

NH+
4 — — — — — — — —

Alm Nested 700 3,400 Single 1,700 Nested 900 4,500
DSi Nested 1,100 3,200 Single 1,800 Single ? —

SO2-
4 Nested 2,600 ? Single 1,700 Nested 1,100 5,900

Cl− Nested 500 3,600 Single 1,500 Nested 1,700 4,600
NO3

− Single 3,600 — — — Nested 1,100 ?
PO3�

4 Nested 1,200 ? — — Single 2,100 —

DOC Single 3,200 — Single 1,500 Nested 800 5,200
DIC Nested 1,100 ? Single 1,400 — — —

ANC Nested 1,300 ? Single 1,900 Nested 500 2,600
SC Nested 1,200 3,200 Single 1,600 Nested 1,800 5,300

Semivariogram type and range for each spatial relationship indicate
nested-scale (i.e., multiple-scale) versus single-scale spatial structure and the
distances over which spatial dependence is expressed, respectively. The dash
symbol (—) indicates semivariograms (i) for which the type or range could
not be determined because of low chemical concentrations or (ii) that are
not applicable for the given type. An unknown range is indicated with
a question mark (?) for solutes with semivariograms that appear to be
nested beyond the maximum separation distance used for the analysis or
for ranges that cannot easily be determined visually.
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semivariograms, suggesting processes other than hydrologic trans-
port were also responsible for observed patterns of streamwater
chemistry. Chemical constituents typically considered to be
controlled by mineral weathering (e.g., Ca2+, dissolved silica,
DIC, Mg2+, ANC, and Na+) all show either broad-scale or
multiscale heterogeneity with the Euclidean relationship and
high nugget values with the flow-unconnected network relation-
ship, suggesting discontinuity or dissimilarity among short un-
connected distances such as two sites above a confluence residing
on different tributaries (Fig. S2). The broad-scale component of
variation in the Euclidean relationships may be explained by either
gross changes in bedrock type or glacial till composition/thickness
across the Hubbard Brook Valley. The valley is underlain by
granodiorite in the western portion and pelitic schist in the eastern
portion (36) with an overlying soil parent material composition
that varies with lithologic sources eroded and deposited by the
most recent glaciation (37). The most apparent broad-scale pat-
tern occurs with Na+ where the Euclidean semivariogram shows
a monotonic increase, which manifests itself spatially with a gen-
eral increase in concentration across the valley from west to east.
This pattern is different from chloride, suggesting the trend in Na+

is not due to road-salt contamination in the east part of the basin,
which is near an interstate roadway. Sodium may be geologically
controlled; however, the trend is counter to currently known
mineral chemistry differences in the Hubbard Brook Valley
(37). Nevertheless, the comparison between the Euclidean and
the flow-connected semivariograms for Na+ suggests a strong
landscape control on the spatial pattern at the basin-wide scale,
and fine-scale patchiness along the stream. Similar spatial de-
pendence at large Euclidean distance is apparent with K+, Ca2+,
dissolved silica, Cl−, SO2�

4 ANC, DIC, and specific conductance.
The difference between nugget values of mineral weathering-

controlled chemistry (i.e., Ca2+, dissolved silica, Mg2+, ANC, and
Na+) for the two network relationships suggests differences in
landscape character and their potential influence on spatial struc-
ture, but over shorter distances. A higher nugget value for the flow-
unconnected metric highlights spatial variability over short dis-
tances at tributary junctions and chemical dissimilarities between
tributaries. This pattern shows that sources contributing to
streamflow that are not downstream from one another may be
heterogeneous despite close proximity. This same pattern was
noted by Likens and Buso (18) in streams strongly influenced
by groundwater seeps and springs. Seeps have been noted
throughout the valley and typically show distinct chemistry
(e.g., ref. 17).
Streamwater chemistry that exhibited the weakest structure,

including NH+
4 , NO�

3 , and PO3�
4 , may be explained in large part

by their low concentrations (i.e., at or near analytical detection
limits; ref. 30). However, there was some indication of spatial
dependence over fine scales (<1,000 m) in NO3

− and PO3�
4 (i.e.,

linear increases in variation over short flow-connected dis-
tances), suggesting that in-stream uptake may be occurring over
very short distances because of biological demand for these
nutrients in the generally nutrient-poor environment (38). Up-
take lengths for ammonium and phosphorus within the Hubbard
Brook Valley were shown to vary between 5 and 277 m and
between 2 and 54 m, respectively (39), suggesting strong in-
stream processing influence on spatial variation over short flow-
connected distances.
Both landscape and hydrologic drivers influence some chem-

ical constituents. For example, DOC, H+, and Alm show auto-
correlation at flow-connected relationships >1,500 m, indicating
an influence of flow accumulation on spatial structure. However,
these solutes also exhibited nested structure in flow-unconnected
distance at fine (<750 m) and broad (>4,500 m) spatial scales.
Thus, two scales of heterogeneity and three different spatial
relationships appear to be important. One is fine scale, resulting
in hotspots of DOC and H+ variation, which typically coincides

with Alm variation (40). At large distances that are not flow
connected, such as headwater regions in different parts of the
network, there is also a high degree of variation in H+, DOC, and
Alm. This pattern may occur because headwater and valley
bottom regions throughout the Hubbard Brook Valley contain
patches of coniferous forest and distinct soils. Many of these
areas (e.g., ridge tops, north-facing slopes, and along the stream)
tend to have shallow, wet, acidic soils (41) with deep litter layers,
and high DOC and Al soil-water concentrations that have been
shown to affect spatial patterns of streamwater DOC and Al (17,
40). It is striking that our semivariogram analysis provides a
quantitative characterization of this large-scale patchiness, which
small-scale, descriptive studies cannot capture.
This study shows that network geostatistics combined with

high-resolution water chemistry data can provide insight into
dominant processes driving biogeochemical patterns in stream
networks at local, longitudinal, and landscape scales. In the
Hubbard Brook Valley, landscape processes were shown to occur
over a range of spatial scales (500 to >6,000 m), with broad-scale
trends and fine-scale patchiness likely driven by geologic, soil,
and vegetation features across the valley. Hydrologic transport
and flow accumulation in streams were also found to exert in-
fluence on streamwater chemistry at downstream distances of
1,400–2,200 m, where variation in chemistry tended to stabilize.
By revealing the spatial structure of stream biogeochemistry and
scales of underlying drivers, this spatially explicit, network-level
analysis is crucial to refining long-held assumptions about stream
structure and function (e.g., ref. 42).

Methods
Basin-Wide Survey. Streamwater chemistry was measured by Likens and Buso
(18) throughout the 3,600-ha Hubbard Brook Valley in the White Mountains
of central New Hampshire (US) (43°56′N, 71°45′W). Detailed information on
the ecological, hydrological, climatological, and geological setting is sum-
marized by Likens (43). The field survey of streamwater chemistry (Alm, acid-
neutralizing capacity, Ca2+, Cl−, DIC, DOC, K+, Mg2+, Na+, NH+

4 , NO
�
3 , pH,

PO3−
4 , dissolved silica, SO2−

4 , and specific conductance) was conducted during
October through December 2001 and is described in Likens and Buso (18). A
subset of 664 from the total of 761 samples was selected for network
analysis based on an assessment of hydrography and the ability to delineate
catchment areas by using a geographical information system derived from
10-m digital elevation models. The sites left out were almost entirely small
tributaries with only a few samples, and they were scattered systematically
throughout the Valley, but primarily in headwater areas.

Analysis of Spatial Structure with Empirical Semivariograms. We quantified
spatial structure in streamwater chemistry by calculating empirical semi-
variograms using distance metrics based on spatial connectivity within the
stream network and across the landscape of the Hubbard Brook Valley (20,
21). Empirical semivariograms provide a means to describe spatial structure
in geographically referenced data by quantifying the variance (or relatedness)
in sample values (e.g., Ca2+ or specific conductance) as a function of the distance
between sample points in Euclidean space (44) or throughout the stream net-
work (24, 45). An empirical semivariogram that displays semivariance as a func-
tion of stream network distance separately for flow-connected and flow-
unconnected relationships is called a Torgegram (46). We used Torgegrams and
empirical semivariograms based on Euclidean distance as exploratory tools
for visualizing patterns of spatial autocorrelation.

Empirical semivariograms provide information on patterns of spatial de-
pendence and have various theoretical forms (Fig. 1). We used the typology
proposed by Ettema and Wardle (26) to compare shapes of semivariograms
among chemical constituents and spatial relationships. Because all of the
spatial relationships used the same data, standardization of semivariance was
not necessary for comparisons among relationships for a given chemical con-
stituent. Only the shapes of the semivariograms were compared among
chemical constituents, and this approach made it possible to preserve the
original units in the semivariograms to aid interpretation. In geostatistics,
terms used to describe the semivariogram include the range, sill, and nugget,
all of which can be estimated quantitatively and have specific meaning for
the purposes of predictive modeling (47). We did not attempt fit models to
the empirical semivariograms because of the complexity of the structures
observed and uncertainty associated with identifying model forms a priori to
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estimate parameters. We determined the approximate range visually by
identifying the inflection point (or points) in variance as a function of sep-
aration distance. The approximate variances at the y intercept (i.e., the
nugget) and the inflection point in variance (i.e., the sill) were also assessed
visually. The goal of analysis with semivariograms was to provide a means
to visualize, with the aid of relatively simple geostatistical tools, the full
range of spatial complexity in biogeochemical patterns across scales in a
headwater stream network. Specific elucidation of mechanisms and ex-
planatory variables for individual chemical constituents is the topic of
ongoing work, including the examination of chemical variability at scales
finer than that available from Likens and Buso (18) (17).
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