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Abstract. In species with complex life cycles, stage-specific effects of environmental
conditions combine with factors regulating stage-specific recruitment to determine popu-
lation-level response to habitat disturbance. The abundance of the stream salamander Gyr-
inophilus porphyriticus (Plethodontidae) is negatively related to both logging-associated
sedimentation and brook trout (Salvelinus fontinalis) in headwater streams throughout New
Hampshire, USA. To understand the mechanisms underlying these patterns, we investigated
stage-specific and interactive effects of sedimentation and brook trout on G. porphyriticus.
We conducted quantitative surveys of salamanders, brook trout, and substrate embeddedness
in 15 first-order streams and used a controlled experiment to test the direct and interactive
effects of these factors on larval growth and survival. G. porphyriticus larvae and adults
had opposite patterns of response to sediment and brook trout. Multiple regression analysis
of our survey data indicated that abundance of larvae was negatively related to brook trout
abundance, but unrelated to substrate embeddedness. In contrast, abundance of adults was
primarily related to substrate embeddedness. Consistent with the field pattern of larval
abundance, brook trout had a negative effect on growth and survival of larvae in the
experiment. However, there was no effect of sediment and no interaction between brook
trout and sediment. Larval and adult abundances were not significantly correlated in the
study streams, indicative of the independent effects of sedimentation and brook trout on
G. porphyriticus populations. These results suggest that adult resistance to fish may facilitate
G. porphyriticus coexistence with brook trout, and that larval resistance to sedimentation
can buffer populations from extinction in fishless streams impacted by logging. In streams
with brook trout, where larval abundances are low, reductions in adult abundance caused
by logging impacts may pose a risk to species persistence. Our findings underscore the
value of information on species life history, demography, and community ecology in as-

sessing sensitivity to anthropogenic perturbation.
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INTRODUCTION

Many river- and stream-dwelling organisms have
complex life cycles involving discrete transitions in
morphological, physiological, and behavioral traits, in-
cluding individual size, diet, microhabitat use, and va-
gility (Wilbur 1980, Resh and Rosenberg 1984, Duell-
man and Trueb 1986, Moyle and Cech 1988, March et
al. 1998). Asaresult, stage-specific sensitivitiesto hab-
itat alteration may interact with species demography to
determine population-level response (Jager 2001, Jons-
son and Ebenman 2001, Marsh 2001). Depending on
the rate of habitat recovery and regulation of stage-
specific recruitment rates (Wilbur 1980, 1996, Caswell
2001), resistance to perturbation of one stage may be
sufficient to buffer populations from local extinction
(Heppell et al. 2000, Biek et al. 2002, Lytle 2002).
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Likewise, high sensitivity to perturbation of multiple
stagesis likely to greatly increase popul ation-scale ex-
tinction risk (Jonsson and Ebenman 2001, Marsh 2001).
Despite these implications, stage-specific responses to
disturbance of stream habitat have not been addressed
in past studies, which have either focused on a single
life-history stage (e.g., Morse et al. 1993, Reeves et
al. 1993, Baxter et al. 1999, Gillespie 2002), or lumped
stages into species-level indices of response (e.g., Dill-
er and Wallace 1996, Lowe and Bolger 2002, Williams
et al. 2002).

A stage-specific approach may be crucial to under-
standing the effects of timber harvest, a major source
of disturbance to upland stream ecosystems. A general
conceptual model of the impacts of timber harvesting
on the physical habitat of small streams (e.g., fine sed-
iment dynamics, channel unit structure, discharge re-
gime, riparian canopy cover) has been described (Gar-
man and Moring 1991, Waters 1995, Hartman et al.
1996, Williams et al. 2002), and there is a growing
body of research documenting correlations between
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these habitat alterations and species abundance (An-
derson 1992, Harding et al. 1998, Welsh and Ollivier
1998, Lowe and Bolger 2002). However, the responses
of stream species to the physical impacts of logging
have varied substantially among studies and regions
(Murphy et al. 1981, Bisson and Sedell 1984, Wilzbach
1985, Bury and Corn 1988, Hicks et al. 1991, Reeves
et al. 1993), and models designed to predict species
abundance based on physical habitat have performed
poorly in streams other than those for which they were
developed (Fausch et al. 1988, Hawkins et al. 2000,
Holm et al. 2001). These shortcomings suggest that we
need a more mechanistic understanding of the rela-
tionship between logging and stream organisms, both
to accurately assess the threat to species persistence in
diverse systems and to accurately interpret information
provided by biotic indicators of stream habitat pertur-
bation (Karr and Chu 1999, Hilty and Merenlender
2000). We investigated two potentially important as-
pects of species response to logging-induced stream
habitat perturbation: direct effects that are life-history
stage-specific and community-mediated indirect ef-
fects.

The stream salamander Gyrinophilus porphyriticus
(Plethodontidae) is particularly well suited for a stage-
specific and community-dependent approach to the
study of species response to stream habitat disturbance.
G. porphyriticus has strictly aquatic larvae and highly
aquatic adults that use spaces among rocks in the
streambed as refuges and foraging locations (Bishop
1941, Resetarits 1991, 1995, Petranka 1998). Total G.
porphyriticus abundance in New Hampshire headwater
streams was shown to be negatively related to substrate
embeddedness (a measure of fine sediment accumula-
tion among the larger substrate particles of the stream-
bed) associated with timber harvest activities, and to
the presence of brook trout (Salvelinus fontinalis)
(Lowe and Bolger 2002). However, aspects of G. por-
phyriticus natural history indicate that these impacts
may be stage specific. Adult G. porphyriticus are large
(60—120 mm snout—vent length [SVL]), and therefore
require large interstitial spacesthat becomerare as sed-
iment accumulates in streams (Waters 1995, Montgom-
ery and Buffington 1998, Shannon 2000). Smaller in-
terstitial spaces usable by larvae (25-60 mm SVL) are
likely to remain available across a wider range of sub-
strate embeddedness conditions. Therefore, we ex-
pected adult abundance to respond more strongly than
larval abundance to direct effects of sedimentation.
While sediment may not have a strong direct effect on
larvae, we predicted it to have a community-mediated
negative indirect effect by reducing the overall avail-
ability of refuges in the stream and thereby increasing
the exposure of larvae to brook trout predation (Jeffries
and Lawton 1984, Kerfoot and Sih 1987). As a con-
sequence of adult size, and resulting low susceptibility
to predation by gape-limited brook trout (Power 1990,
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1992), we did not expect adult abundance to be related
to brook trout abundance.

In the current study, we used data from intensive
sampling of 15 G. por phyriticus populations and a con-
trolled experiment to assess the contributions of life-
history stage-specific and interactive effects of sedi-
mentation and brook trout to patterns of total G. por-
phyriticus abundance. We al so hoped to provide general
insight into the demographic structure of G. porphyr-
iticus populations by investigating the correlation be-
tween larval and adult abundancesin the study streams.

METHODS
Study organism and study sites

G. porphyriticus belongs to the family Plethodon-
tidae, the lungless salamanders. This species is found
in cool, well-oxygenated, low-order streams along the
Appalachian uplift, from central Alabama to southern
Quebec (Bishop 1941, Petranka 1998). The larval pe-
riod is ~3—4 years and sexual maturation occurswithin
oneyear of metamorphosis (Bishop 1941, Bruce 1980).
Mark-recapture data indicate that the yearly survival
probability of both larvae and adults is ~0.70 (Lowe,
2003).

Based on results of a previous study (Lowe and Bol-
ger 2002), we selected 15 first-order study streams
throughout New Hampshire, USA, covering a gradient
of logging-associated substrate embeddedness (the pro-
portion of substrate with visible vertical surfacesburied
in silt or sand; Welsh et al. 1997) and both with and
without brook trout (trout occupancy estimated in vi-
sual surveys). These stream drainages were moderately
sloped (2—4% slopes), and small (<1 km? drainage
area), with mixed stands of ~50% hardwoods (Acer
saccharum, Betula alleghaniensis, Fagus grandifolia,
Betula papyrifera) and 50% softwoods (Picea rubens,
Abies balsamea, Tsuga canadensis). Experiments were
conducted along Alder Brook, a first-order stream in
northern New Hampshire.

Field surveys

We established a 100 m long survey section in each
study stream, starting 25 m upstream of the confluence
of the first-order study stream with alarger stream. We
conducted 4 salamander surveys of these 15 sections
at 3-wk intervals beginning in mid-June and ending in
late August of 2000 using a cover-controlled active-
search sampling method (Heyer et al. 1994). Moving
upstream, one rock between 64 and 256 mm in diameter
(cobble; Platts et al. 1983) was turned per meter of
stream length. Rocks were selected across all lateral
microhabitats (i.e., bank, edge, channel) and were not
embedded in fine sediments. An aquarium dip net was
used to capture salamanders, including those flushed
by the current.

These data were used to estimate total, larval, and
adult abundance values (mean number of individuals/
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survey section from four sampling dates) for each
stream. All G. porphyriticus were also individually
marked by subcutaneous injection of afluorescent elas-
tomer (Northwest Marine Technologies, Shaw Island,
Washington, USA). To assess the influence of catcha-
bility on variation in indices of G. porphyriticus abun-
dance, we tested for a correlation between mean abun-
dance values and the number of individually marked
animals in the response groups (i.e., total, larvae,
adults) in each stream (Pledger and Efford 1998).

Substrate embeddedness was measured visually
within 6 randomly placed 1 m wide transects extending
between the bank-full channel edges of the stream (edg-
es at high-flow conditions as indicated by evidence of
scour; Welsh et al. 1997, Lowe and Bolger 2002). To
estimate brook trout abundance, we conducted electro-
fishing censuses of the 100-m study sections during a
1-wk period in late August of 2000. These censuses
involved multiple-pass removal using a BP-12 back-
pack electroshocker (Smith-Root, Incorporated, Van-
couver, Washington, USA) set to 500V DC. Fish cap-
tured in each pass were anesthetized using MS-222
(Argent Chemical Laboratories, Incorporated, Red-
mond, Washington, USA). They were then counted,
weighed, measured, and returned to the stream. A mod-
ified Zippin maximum likelihood method was used to
estimate brook trout abundance (number of individual s/
survey section) and the standard error of abundance
(Carle and Strub 1978).

Stage-specific effects of sedimentation
and brook trout

Pearson product-moment correlations were calcul at-
ed between mean larval and adult G. porphyriticus
abundance estimates and between mean substrate em-
beddedness and brook trout abundance. Stepwise mul-
tiple regression analysis with backward elimination (P
to remove variables = 0.05; Kleinbaum et al. 1998)
was then used to identify the primary predictors of
total, larval, and adult G. porphyriticus abundance from
the set of independent variables including mean sub-
strate embeddedness, brook trout abundance, and the
interaction of these two factors. To achieve normality,
mean substrate embeddedness was arcsine square-root
transformed and brook trout abundance was square-
root transformed. The stepwise multiple regression
analysis was performed with PROC REG of SAS (SAS
Institute 1990). We analyzed the residuals of all re-
gression models to confirm normality and constant var-
iance (Kleinbaum et al. 1998). The relationships be-
tween larval and adult G. porphyriticus abundance and
significant predictors from the final models were ex-
amined directly using univariate regression methods.

Experimental test of sedimentation
and brook trout effects

We conducted controlled experiments to examine di-
rect and interactive effects of sedimentation and brook
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trout on larval G. porphyriticus growth and survival.
Experimental units were 250-L flow-through artificial
stream pools set on the bank of Alder Brook. Prior
observations indicated that G. porphyriticus larvae did
not avoid pool mesohabitat (W. H. Lowe, unpublished
manuscript). We used garden pools constructed of
black, high-density polyethylene. Pools were 3 m long
by 1 m wide with a central section 0.5 m deep sur-
rounded by a peripheral ring 0.25 m deep. Pools were
gravity fed from the main stream channel and flow was
6 L/min. Substrate composition was standardized by
first adding a base mixture of equal volumes of un-
treated playground sand and gravel (modified from Re-
setarits 1991). We then randomly assigned 12 rocks of
between 64 and 256 mm in diameter (cobble) to each
pool. Enclosures were open to colonization by stream
invertebrates and input of falling terrestrial litter and
invertebrates. They were left for 1 wk to reach equi-
librium physical conditions prior to the beginning of
each experiment, and this was confirmed by repeated
sampling of temperature, dissolved oxygen, pH, and
conductivity. We never detected a difference between
physical conditions in the pools and in the stream.

In July and August 2000, we conducted two 14-d
experiments applying sediment and brook trout treat-
ments to larval G. porphyriticus. A randomized com-
plete block design was employed with time as the
blocking factor. Within each block, two substrate em-
beddedness levels and two brook trout densities were
applied to pools containing three G. porphyriticus lar-
vae (25—-45 mm SVL and 590—4800 mg mass,;;4), With
three replicates per treatment level per block. The num-
ber of larvae added per pool was based on mark—re-
capture estimates of local larval densities (Lowe,
2003). Sediment treatments replicated mean propor-
tions of embedded substrate in streams impacted and
unimpacted by timber harvest activities: 0.30 in un-
impacted streams and 0.60 in impacted streams (Lowe
and Bolger 2002). These treatments were applied by
burying the vertical surfaces of 4 of 12 cobble particles
in low embeddedness treatments and 8 of 12 particles
in high embeddedness treatments in 2 and 4 L of high
quality, untreated playground sand, respectively. Fish
densities were zero or one adult brook trout (90-120
mm fork length). The experimental trout density (0.33
individuals/m?) was comparable to mean trout density
(=1 sE) in trout-occupied study streams (0.29 = 0.06
individuals/m?, reach length = 100 m, mean width =
1.61 = 0.08 m; see Fig. 1 for trout abundances). Sal-
amanders and fish were randomly assigned to pools.

At the conclusion of each experiment, mean pro-
portional growth (MasS;,y — MasSyija/MaASS niga, AVEr-
aged across surviving individuals) and proportional
survival of larvae were calculated for each pool. For
growth calculations, individual larvae were identified
using pre-existing epidermal discolorations recorded at
the beginning of the experiment. The effects of em-
beddedness and brook trout on larval growth and sur-
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Fic. 1. Relationship between brook trout abundance (no.

individual s/survey section, square root-transformed) and lar-
val Gyrinophilus porphyriticus abundance (number of indi-
viduals/survey section from four sampling dates [mean *= 1
sE]) in 15 study streams located throughout New Hampshire,
USA. Thelineresulting from the best-fitting regression model
(Table 1) is plotted.

vival were analyzed using two-way analyses of vari-
ance (ANOVA) of the full factorial model. Because
block effects were not close to significant in analyses
of larval growth and survival (P > 0.1), block was not
included as a factor in the final statistical models. Lo-
gistic regression was used to test for an effect of larval
size (log SVL, mm) on survival in pools with trout,
controlling for the lack of independence within pools
by including pool as a source of variability in this mod-
el.

REsULTS
Field surveys

Mean estimates of total, larval, and adult G. por-
phyriticus abundance were significantly correlated with
the number of uniquely marked individuals in these
groups in each stream (Pearson product-moment cor-
relations: total, r = 0.98, N = 15, P < 0.001; larvae,
r =0.97, N =15, P < 0.001; adults, r = 0.98, N =
15, P < 0.001), indicating that our measures of relative
abundance were accurate and not strongly influenced
by variation in animal catchability. Other salamanders
encountered in surveys included Desmognathus fuscus
and Eurycea bislineata (both Plethodontidae). D. fus-
cus was rare. E. bislineata was present in all surveyed
streams.

Mean substrate embeddedness of streams ranged
from 0.08 to 0.77 (Fig. 2). Brook trout were found in
12 of the 15 streams, with a total of 498 individuals
captured. Electrofishing mortality was low (3 fish). Es-
timated trout abundances in the 100-m survey sections
ranged from 0 to 94 individuals (Fig. 1), with fish size
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ranging from 31 to 180 mm fork Iength and 0.51-63.6
g. A second round of electrofishing in August 2002
obtained similar results (K. H. Nislow and W. H. Lowe,
unpublished data), indicating that differences among
sites are consistent across years. Given the size ranges
observed both across and within sites, we assume that
multiple age classes were present in all of the streams
where fish were found. Brook trout was the only fish
species found in these surveys.

Sage-specific effects of sedimentation
and brook trout

Consistent with our predictions, G. porphyriticuslar-
vae and adults had opposite patterns of response to
sediment and brook trout abundance (Table 1). Larval
abundance was negatively related to brook trout abun-
dance (Fig. 1), and unrelated to embeddedness. In con-
trast, adult G. porphyriticus abundance was primarily
related to substrate embeddedness (Fig. 2). However,
contrary to our prediction, there was no interactive ef-
fect of substrate embeddedness and brook trout abun-
danceon larval G. porphyriticusabundance (full-model
multiple regression: substrate embeddedness X brook
trout abundance, F = 0.61, df = 1, 11, P = 0.45). Total
G. porphyriticus abundance (i.e., larvae and adults
combined) was negatively related to both substrate em-
beddedness and brook trout abundance (Table 1). We
observed no significant correl ation between brook trout
abundance and embeddedness (Pearson product-mo-
ment correlation: r = 0.33, N = 15, P = 0.23), justi-
fying our use of these variables as independent pre-
dictors in the regression models. In accord with the
differential responses of the two stages, mean larval
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Fic. 2. Relationship between substrate embeddedness
(mean proportion of embedded substrate particles from six
stream transects, arcsine square root-transformed) and adult
Gyrinophilus porphyriticus abundance (number of individu-
als/survey section from four sampling dates [mean = 1 sg])
in 15 study streams|ocated throughout New Hampshire, USA.
The line resulting from the best-fitting regression model (Ta-
ble 1) is plotted.
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TABLE 1.
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Results of multiple regression analyses of the relationships between substrate em-

beddedness (mean proportion of embedded substrate particles from six stream transects,
arcsine square-root transformed) and brook trout abundance (no. individual s/survey section,
square-root transformed) and total, larval, and adult Gyrinophilus porphyriticus abundance
(mean no. individuals/survey section from four sampling dates) in 15 study streams.

Model variables bt R? P
Total G. porphyriticus abundance
Mean substrate embeddedness, brook trout abundance - - 0.71 <0.01
Larval G. porphyriticus abundance
Brook trout abundance - 0.45 <0.01
Adult G. porphyriticus abundance
Mean substrate embeddedness - 0.47 <0.01

T Indicates whether regression coefficient was positive or negative.

and adult abundances were not significantly correlated
in the study streams (r = 0.49, N = 15, P = 0.06).

Experimental test of sedimentation and
brook trout effects

Experimental results were consistent with results of
field surveys. There was a significant negative effect
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FiG. 3. Effects of substrate embeddedness, a measure of
fine sediment accumulation in the stream bed, and brook trout
abundance on (a) mean proportional growth ([mass;,y —
mMass;ia]l/Mass,ia; =1 se) and (b) proportional survival (=1
se) of Gyrinophilus porphyriticus larvae.

Survival (prop.)

of brook trout on growth and survival of G. porphyr-
iticus larvae in the experimental mesocosms (Fig. 3,
Table 2). Proportional growth (mean = 1 sg) was
—0.002 = 0.02 mg in the absence of trout and —0.07
+ 0.01 mg in the presence of trout. Proportional sur-
vival was 1.0 = 0.0 in the absence of trout and 0.53
+ 0.09 in the presence of trout. In contrast, sediment
had no direct effect on larval growth or survival. Con-
trary to our predictions, but consistent with field survey
results, there was also no interactive effect of substrate
embeddedness and brook trout on larval growth or sur-
vival. Results did not differ when larval survival was
analyzed as a categorical response variable using mul-
tiple logistic regression (SAS Institute 1990). Survival
was unrelated to larval size in pools with fish (logistic
regression: x? = 0.19, N = 36, P = 0.66).

DiscussioN

Results of this study support the hypothesis that lar-
val and adult G. porphyriticus respond differently to
sedimentation and brook trout in headwater streams of
the northeastern USA. Both field and experimental data
indicated that G. porphyriticus larvae are neither di-
rectly nor indirectly affected by substrate embedded-
ness, but are negatively affected by brook trout. In
contrast, adult G. porphyriticus are primarily affected
by substrate embeddedness. Combined with the lack of
asignificant correlation between larval and adult abun-
dance in the 15 study streams, this difference in stage-
specific response to sedimentation and brook trout also
indicates a surprisingly high level of independence in
the status of these two life-history stages.

Responses exhibited by larval and adult G. por-
phyriticus were consistent with our hypothesis that the
differing interstitial habitat requirements of these two
stages mediate the effects of sedimentation. The lack
of relationship between substrate embeddedness and
larval abundance supports our prediction that reduction
in interstitial habitat caused by sediment accumulation
does not directly limit larval abundance. In contrast, a
reduction in large interstitial spaces as fine sediments
accumulate in the stream may increase adult mortality
during high-flow events (Harr 1986, Chapman and Kra-
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TaBLE 2. Results of ANOVAs of the effects of substrate embeddedness and brook trout
abundance on larval Gyrinophilus porphyriticus mean proportional growth ([mass;,y —
Mass,i»]/Mass,i») @ahd proportional survival in experimental stream pools.

Source df MS F P
Growth
Substrate embeddedness 1 0.0002 0.06 0.81
Brook trout 1 0.02 9.32 <0.01
Substrate embeddedness X brook trout 1 0.0002 0.08 0.79
Error 18 0.003
Survival
Substrate embeddedness 1 0.01 0.09 0.76
Brook trout 1 1.34 27.26 <0.0001
Substrate embeddedness X brook trout 1 0.01 0.09 0.76
Error 20 0.05

mer 1991, Matthaei and Townsend 2000), or increase
exposure of adults to non-fish predators (Uhler et al.
1939, Brodie et al. 1979). Bishop (1941) observed ag-
gressive interactions among G. porphyriticus adultsin-
dicative of territoriality, a characteristic likely to re-
inforce the negative effects of sedimentation by pre-
venting multiple adults from using the same refuge.
Alternatively, sediment may change the availabilities
of adult prey resources through effects on the inver-
tebrate community (Burton 1976, Ryan 1991, Waters
1995, Kerby and Kats 1998). Further investigation is
required to test these alternative hypotheses and to di-
rectly assess changes in the size structure and avail-
ability of interstitial habitat accompanying sediment
accumulation.

Sediment and brook trout did not have a significant
interactive effect on larval G. porphyriticus abundance
in the field or on larval growth and survival in exper-
imental enclosures, refuting the prediction that reduced
availability of refuges increases the negative effects of
brook trout on larvae. These results suggest that refuges
are not sufficiently reduced in streams impacted by
sedimentation to exacerbate the already strong effects
that brook trout have on larval G. porphyriticus, or that
refuges are not involved in the relationship between
trout and G. porphyriticus larvae. Resistance of larvae
to reduced availability of refuges may be a consequence
of larval predator-avoidance behavior (Sih et al. 1988,
Brodie et al. 1991, Sih and Wooster 1994). If larvae
limit foraging to the area surrounding a known refuge,
thus maintaining access to that refuge, then the negative
effects of brook trout would only increase when the
number of larvae exceeds the number of available ref-
uges. Behavioral interactions among larvae may further
regulate response to reduced refuge availability (Camp
and Lee 1996, Wiltenmuth 1997). Larval tolerance of
the proximity of conspecifics would increase the pro-
portion of embedded substrate particlesrequired to pro-
duce a significant sediment X brook trout interaction.
Multiple larvae were frequently found under the same
rock during stream surveys (W. H. Lowe, personal ob-
servation), suggesting that this stage may be tolerant
of conspecific proximity.

The difference in predictors of larval and adult G.
porphyriticus abundance and lack of a significant cor-
relation between larval and adult abundances across
study streams may be indicative of donor stage density-
independent recruitment (M cPeek and Peckarsky 1998,
Caswell 2001). Although further research on the local
demography of G. porphyriticus is needed, these data
suggest that adult recruitment is partially independent
of larval density and, likewise, that larval recruitment
is partially independent of adult density. Factors that
may exert donor-stage density-independent controls on
larval and adult recruitment include availability of egg-
laying sites (Holomuzki 1991), stream discharge (Kup-
ferberg 1996), or availability of adult territories (Camp
and Lee 1996, Wiltenmuth 1997). Variability in pop-
ulation size structure produced by factors other than
sedimentation and brook trout abundance, such as pop-
ulation-level adaptation to the local hydrologic regime
or climatic conditions (Bruce 1972), may have also
contributed to the lack of correlation between larval
and adult abundances. In another study, larval and adult
G. porphyriticus were shown to exhibit similar patterns
of movement along the stream corridor (Lowe 2003),
suggesting that differences in population size structure
were not a consequence of stage-specific dispersal be-
havior. Adult G. porphyriticus were also found to have
no effect on larval growth or survival in experimental
stream pools (W. H. Lowe, unpublished manuscript).
Therefore, it is unlikely that the relationship between
larval and adult abundances in the survey streams was
aresult of interactions between these two life-history
stages.

These results help to answer the question of how G.
porphyriticus is able to coexist with brook trout. Hav-
ing shown strong negative effects of brook trout on G.
porphyriticuslarvae (Resetarits 1991, 1995), Resetarits
(1995) concluded that the persistence of G. porphyri-
ticus with brook trout is “‘likely a complex function of
the interactions between the life history and local de-
mography of both [species].”” Our results provide em-
pirical support for this hypothesis, suggesting that dif-
ferential responses of G. porphyriticus life-history
stages to brook trout are critical to the coexistence of
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these two species. Preliminary evidence that recruit-
ment of G. porphyriticus adults, the trout-resistant life-
history stage, may be partially independent of larval
density lends further support. These findings also cor-
roborate the view that individual size and associated
timing of metamorphosis are key structural variables
in interspecific interactions involving stream amphib-
ians (Wilbur and Collins 1973, Southerland 1986, Hair-
ston 1987, Resetarits 1995) and are therefore funda-
mental determinants of the distribution and abundance
of these species.

IMPLICATIONS

Increasingly, sedimentation is viewed as a pervasive
threat to the ecological integrity of stream ecosystems
(Waters 1995, Jones et al. 2000, USEPA 2000). There
is growing evidence that stream amphibians are sen-
sitive indicators of this form of stream habitat pertur-
bation (Hawkins et al. 1983, Corn and Bury 1989,
Welsh and Ollivier 1998, Lowe and Bolger 2002). The
relatively narrow standard error intervals around mean
G. porphyriticus abundance values (Figs. 1 and 2) are
indicative of the repeatability of survey results, and
thereby support the general utility of these species and
our survey methods in stream monitoring programs.
Our study also provides an empirical basis for im-
proving these monitoring programs, indicating that
stage-specific responses to sedimentation of focal spe-
cies should be evaluated before large-scale sampling
efforts are initiated. In addition to improving the ac-
curacy of assessments of sedimentation intensity and
extent, information on stage-specific response may en-
able researchers to increase the efficiency of sampling
programs by focusing on an informative (i.e., sensitive)
stage. For example, researchers can limit sampling to
the subset of habitats within the stream used by that
stage (e.g., edge, channel, pool, riffles; Platts et al.
1983, Frissell et al. 1986) and employ sampling tech-
niques suited to that stage (Heyer et al. 1994, Hauer
and Lamberti 1996).

The risk posed by logging activities to the persis-
tence of G. porphyriticus populations is a function of
both the sensitivities of individual life-history stages
and the community composition of impacted streams.
More specifically, larval resistance to the effects of
sedimentation may buffer populations in fishless,
logged drainages from local extinction. Likewise, re-
ductions in adult abundance caused by logging impacts
may pose an especially significant risk to G. porphyr-
iticus persistence in streams with brook trout, where
larval populations are already low. These results show
that species life history, demography, and community
ecology must be considered in assessing the threat to
population persistence posed by habitat alteration in
streams, as well as by other stressors in other systems.
As a function of their complex life histories (Wilbur
and Collins 1973) and community ecology (Hairston
1987, Wilbur 1997, Blaustein and Kiesecker 2002), am-
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phibians are likely to be particularly susceptible to
these mediators of population-level response to an-
thropogenic stressors.
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