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Changes in the amount, intensity, and timing of precipitation are
increasing hydrologic variability in many regions, but we have
little understanding of how these changes are affecting freshwa-
ter species. Stream-breeding amphibians—a diverse group in North
America—may be particularly sensitive to hydrologic variability dur-
ing aquatic larval and metamorphic stages. Here, we tested the pre-
diction that hydrologic variability in streams decreases survival
through metamorphosis in the salamander Gyrinophilus porphyriticus,
reducing recruitment to the adult stage. Using a 20-y dataset from
Merrill Brook, a stream in northern New Hampshire, we show
that abundance of G. porphyriticus adults has declined by ∼50%
since 1999, but there has been no trend in larval abundance. We
then tested whether hydrologic variability during summers influ-
ences survival through metamorphosis, using capture–mark–recap-
ture data from Merrill Brook (1999 to 2004) and from 4 streams in
the Hubbard Brook Experimental Forest (2012 to 2014), also in New
Hampshire. At both sites, survival through metamorphosis declined
with increasing variability of stream discharge. These results sug-
gest that hydrologic variability reduces the demographic resilience
and adaptive capacity of G. porphyriticus populations by decreasing
recruitment of breeding adults. They also provide insight on how
increasing hydrologic variability is affecting freshwater species, and
on the broader effects of environmental variability on species with
vulnerable metamorphic stages.
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Mounting evidence suggests that changes in environmental
variability are affecting natural populations and commu-

nities as much as changes in mean climate conditions (1–5).
Changes in the variability of precipitation and streamflow are
likely to have particularly strong effects on freshwater biodiversity
(6–8). In the northeastern United States, current and projected
hydrologic changes include increased annual precipitation, reduced
snow coverage, and increased frequency and intensity of extreme
precipitation events (9–14). These changes are expected to further
increase hydrologic variability (15), and similar trends are occur-
ring and predicted in other regions (16–18). Currently, however,
we have little empirical understanding of how changes in hydro-
logic variability influence the demography of freshwater species,
leading to population- and community-level effects (19–21).
Many amphibians have complex life cycles tightly tied to water

availability, making them vulnerable to changing hydrologic re-
gimes (22–24). Broadly, life cycles of amphibians with free-living
larvae can be divided into 3 posthatching stages: (1) an immature
larval stage during which many species are restricted to aquatic
environments (i.e., ponds, lakes, streams) and respire cutaneously
or with external gills; (2) metamorphosis, when larvae transform to
the adult body form, which includes the loss of external gills in
many species; and (3) an adult stage when reproduction occurs,
usually after further growth and sexual maturation following
metamorphosis, and respiration is cutaneous or assisted with lungs
and other internal respiratory surfaces (25). Amphibian species dif-
fer in many aspects of this general life cycle, including the dura-
tion of larval, metamorphic, and postmetamorphic stages (26); the

extent of morphological and physiological change during meta-
morphosis (27); the timing of sexual maturation (28); and adult
associations with aquatic vs. terrestrial habitats (29). Across spe-
cies, however, larval survival and adult recruitment are closely tied
to the hydrology of aquatic habitats (30–32).
Intensive and long-term demographic data show that changing

hydrologic regimes are affecting pond-breeding amphibians (33–35),
but a lack of similar data for stream and terrestrial amphibians
has limited our ability to assess their response to climate change
(36). Stream-breeding amphibians may be sensitive to hydrologic
change because many have prolonged larval and metamorphic
stages, during which they are restricted to stream channels, and
behavioral, morphological, and ecological traits adapted to his-
torical hydrologic conditions (37–41). Consistent with this expec-
tation, stream amphibians were virtually absent from California
streams exposed to catastrophic debris floods (42), unpredictable
dam releases increased mortality in 2 river-breeding frogs (43),
and occupancy of larval salamanders in North Carolina streams
dropped by 30% during an extended drought (44).
We used 20 y of data from Merrill Brook, a stream in northern

New Hampshire (44°92′N, 71°08′W), to understand the demo-
graphic effects of hydrologic variability on the stream salamander
Gyrinophilus porphyriticus.G. porphyriticus is in the Plethodontidae,
a diverse family of lungless salamanders, many of which
breed in streams (29, 45). This species is found in small, cool,
well-oxygenated streams along the Appalachian uplift in eastern
North America. Larvae are exclusively aquatic and have external
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gills; the larval period lasts 3 to 5 y (46). External gills are
reabsorbed during metamorphosis, along with other morphologi-
cal changes that include the loss of a keeled tail and horizontally
compressed head. There is little published information on the
timing and rate of metamorphosis in G. porphyriticus, but Bishop
(47) observed larvae transforming fromMarch through October in
New York populations. Our observations also indicate that
metamorphosis is gradual in northern populations, extending over
multiple months. Adults rely on cutaneous respiration and remain
highly aquatic, but can leave the stream to forage terrestrially at
night (48–50). During the day, G. porphyriticus individuals are
found in interstitial spaces among the larger substrate objects of
the streambed and bank.
In a previous analysis, we found that abundance ofG. porphyriticus

adults in Merrill Brook declined between 1999 and 2010, but there
was no trend in larval abundance over that period (51). The same
study showed that larval and adult survival probabilities were
constant across years (1999 to 2004), but adult recruitment from
the larval population varied by year. These results led us to predict
that climate-related changes in hydrology may be decreasing sur-
vival through metamorphosis, causing adult recruitment and
abundance to decline. Our objectives here were (1) to determine
whether abundance of G. porphyriticus adults continued to decline
in Merrill Brook through 2018 and (2) to assess the demographic
mechanism for this decline by testing if survival through meta-
morphosis declined with increasing variation in stream discharge
during the summer, thereby reducing adult recruitment. For our
first objective, we used 20 y of survey data from Merrill Brook
(1999 to 2018) to test for long-term trends in abundance of
G. porphyriticus larvae and adults. We used 2 approaches to accom-
plish our second objective. First, we tested whether survival
through metamorphosis was related to variation in stream dis-
charge during the summer over the first 6 y of sampling at Merrill
Brook (1999 to 2004). We conducted intensive capture–mark–
recapture surveys in that first 6-y period, allowing for direct esti-
mation of survival through metamorphosis. As a second, inde-
pendent assessment of this demographic mechanism, we tested
whether survival through metamorphosis was related to variation
in summer discharge in 4 gauged streams in the Hubbard Brook
Experimental Forest (HBEF), located in central New Hampshire
(43°56′N, 71°45′W), 120 km southwest of Merrill Brook. We
expected a priori that salamanders would be most vulnerable to
discharge variability during the summer, when they are active in
and along stream channels (52, 53).

Results
Long-Term Trends in Abundance. Between 1999 and 2018, counts of
G. porphyriticus larvae in July surveys of the 1,000-m study sec-
tion of Merrill Brook ranged from 20 to 122 and counts of adults
ranged from 9 to 70. After correcting for stage-specific recapture
probabilities (51), estimates of larval abundance ranged from 268
to 943 and estimates of adult abundance ranged from 60 to 467.
There was no trend in larval abundance over the 20-y sampling
period (n = 20, Kendal’s τ = 0.07, P = 0.67; Fig. 1A), but adult
abundance declined significantly (n = 20, τ = −0.45, P = 0.01;
Fig. 1B). Larval and adult abundances were not correlated (n = 20,
r = −0.07, P = 0.78) and there was no significant trend in total G.
porphyriticus abundance when larval and adult abundances were
combined (n = 20, τ = −0.16, P = 0.31).

Hydrologic Variability. Between 1999 and 2018, summer discharge
coefficients of variation (CVs) in the Dead Diamond River, 9.2
km downstream of the Merrill Brook confluence, ranged from 70
to 197 (Fig. 1C). The maximum discharge CV was 178.05 over the
5 summers included in our analysis of survival through meta-
morphosis (Fig. 2A), well within the range of hydrologic variabil-
ity over the 20-y study period. Summer discharge CVs were
not correlated with summer discharge means (n = 20, r = −0.14,

P = 0.55) or with discharge CVs for the preceding and subsequent
nonsummer periods (i.e., September 1 to May 31; n = 20, jrj <
0.24, P > 0.28). Summer discharge CVs were positively correlated
with the number of summer days below the fifth percentile of
mean daily discharge values (n = 20, r = 0.67, P < 0.01), but not
significantly correlated with the number of summer days above the
95th percentile of mean daily discharge values (n = 20, r = −0.04,
P = 0.56). There was no significant temporal trend in summer
discharge CVs (n = 20, τ = −0.21, P = 0.21).
Despite their close proximity to one another, the HBEF

streams differed in discharge CVs over the summers of 2013 and
2014 (Fig. 2B). North-facing Zigzag and Canyon Brooks had

A
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B

Fig. 1. Trends in abundance of G. porphyriticus larvae (A) and adults (B) in
Merrill Brook, New Hampshire, and CVs of summer discharge in the Dead
Diamond River (C) over the 20-y sampling period (1999 to 2018). Abundance
estimates are based on counts from surveys in mid-July of each year, cor-
rected for stage-specific detection probabilities. There was no trend in larval
abundance (n = 20, τ = 0.07, P = 0.67), but adult abundance declined sig-
nificantly over the 20-y period (n = 20, τ = −0.45, P = 0.01). The discharge
gauge on the Dead Diamond River is 9.2 km downstream of the Merrill
Brook confluence. There was no trend in summer discharge CVs in the Dead
Diamond River (n = 20, τ = −0.21, P = 0.21). Shaded areas show the years
during which intensive capture–mark–recapture surveys were conducted,
which allowed us to estimate survival through metamorphosis.
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higher summer discharge CVs, whereas south-facing Paradise
and Bear Brooks had lower summer discharge CVs. The differ-
ence between south- and north-facing slopes suggests that evapo-
transpiration contributes to stream discharge variability, in addition
to differences in precipitation regimes, catchment area, and other
hydrogeomorphic factors. Summer discharge CVs for 2013 and
2014 were not correlated with summer discharge means (n = 4, τ =
0.55, P = 0.28) or with discharge CVs for the intervening non-
summer period (n = 4, τ = 0.67, P = 0.17). Summer discharge CVs
in the HBEF streams were not significantly correlated with the
number of summer days below the fifth percentile of mean daily
discharge values (n = 4, τ = 0.20, P = 0.12) or above the 95th per-
centile of mean daily discharge values (n = 4, τ = −0.36, P = 0.80).

Effects of Hydrologic Variability on Survival through Metamorphosis.
Support for the top 2 transition probability models for Merrill
Brook was somewhat ambiguous (differences in Akaike’s in-
formation criterion corrected for small sample sizes [ΔAICc] =
1.88; Table 1), but the likelihood ratio test (LRT) result was not
significant (χ2 = 4.21, P = 0.38), indicating that the model with
fewer parameters was more parsimonious (i.e., with larva-to-
adult transition probabilities [ψlarva→adult] a linear function of sum-
mer discharge CV). Unbiased estimates of annual survival through
metamorphosis (i.e., ψlarva→adult with Slarva = 1.0) showed a

strong negative relationship with summer discharge CVs for the Dead
Diamond River between 1999 and 2003 (β̂± SE= -0.02± 0.008;
Fig. 3A and Table 2). There was unambiguous support for the
top transition probability model for the HBEF streams, with
ψlarva→adult a linear function of summer discharge CV (ΔAICc > 2.0;
Table 1). Like in Merrill Brook, unbiased estimates of monthly
survival through metamorphosis showed a strong negative re-
lationship with summer discharge CVs for the HBEF streams
(β̂± SE= -0.04± 0.01; Fig. 3B and Table 2).

Discussion
Abundance of G. porphyriticus adults in Merrill Brook declined
by ∼50% between 1999 and 2018, but there was no trend in larval
abundance (Fig. 1). This result indicates that adult survival or
adult recruitment has declined over the last 20 y; however, adult
survival appears to be constant across years (51, 54) (Table 2),
pointing to metamorphosis as the critical stage for understanding
this trend. Here, we tested whether hydrologic variability during
the summer, when G. porphyriticus individuals are active in and
along stream channels, reduces adult recruitment by decreasing
survival through metamorphosis. Using intensive capture–mark–
recapture data from the first 6 y of sampling in Merrill Brook
(1999 to 2004) and from 4 HBEF streams (2012 to 2014), we
found that the probability of individuals surviving through
metamorphosis declined with increasing hydrologic variability
during the summer (Table 1 and Fig. 3). Summer discharge CVs
were not correlated with summer discharge means or discharge
CVs for nonsummer periods, and not consistently correlated
with the frequency of extreme low- or high-flow events, sug-
gesting that overall hydrologic variability during summers (i.e.,
both relatively low and high flows) reduces survival through
metamorphosis.
Despite small sample sizes, clear relationships between hy-

drologic variability and ψlarva→adult in Merrill Brook and the 4
HBEF streams show the vulnerability of G. porphyriticus indi-
viduals during metamorphosis. Likewise, previous analyses
showing a lack of variation in larval and adult survival proba-
bilities in Merrill Brook and the HBEF streams (51, 55) indicate
that pre- and postmetamorphic individuals are resistant to the
effects of hydrologic variability. These results add to mounting
evidence that metamorphic stages are vulnerable to abiotic and
biotic stressors (56–58), while also underscoring the need for
more research on this topic in light of climate-related increases
in environmental variability worldwide (9, 59, 60). Metamor-
phosis is an inherently vulnerable, transitional life stage, and
many species have physiological, phenological, and behavioral
strategies to reduce exposure to environmental variation during
this stage (61–64). It is reasonable to expect, therefore, that in-
creases in spatial and temporal environmental variability are
testing the limits of these strategies, and may be affecting survival
through metamorphosis more broadly than currently recognized.
We did not observe a decline in total G. porphyriticus abun-

dance over the study period because larval abundance—although
highly variable among years—showed no long-term trend, buff-
ering the decline in adult abundance (Fig. 1). This lack of cor-
relation between larval and adult abundances suggests that adult
recruitment is, at least in part, independent of larval density. It is
also consistent with a potential mechanism for the decline in
adult recruitment: the inability of metamorphs to access refuges
during low and high flows. Small larvae can burrow deep into the
streambed to avoid physical disturbance during high flows and to
access subsurface water during low flows, whereas the large body
size of metamorphs likely limits access to these deep interstitial
refuges (65, 66). Adults are larger than metamorphs, but can
move to streambank refuges to avoid high flows and to access moist
microsites during low flows (48, 67). Metamorphs, in contrast,
are likely restricted to the stream channel due to continued use of

Fig. 2. Hydrographs of summer discharge (June 1 to August 31) in the Dead
Diamond River (A) and 4 streams in the HBEF (B), New Hampshire. Dead
Diamond plots show discharge data for the summers of 1999 to 2003, the
summers included in our analysis of survival through metamorphosis in
Merrill Brook. The discharge gauge on the Dead Diamond River is 9.2 km
downstream of the Merrill Brook confluence. Hubbard Brook plots show
discharge data from the summers of 2013 (solid line) and 2014 (dashed line),
the 2 summers during the study period (2012 to 2014) when discharge
sampling occurred at regular 5-min intervals. The CV of daily mean discharge
is shown in the upper right portion of each panel.
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external gills (68), although exactly how reliance on external gills
changes during metamorphosis is unknown. We would not expect
this mechanism to be dependent on the density of larvae, which
should be far less limited by refuge availability than metamorphs due
to their small size, on average, thus reducing interactions between
the 2 stages (65, 66). The maximum size of larvae (snout-to-vent
length) declined by ∼10 mm in Merrill Brook between 1999 and
2018 (n = 20, τ = −0.39, P = 0.01), further indicating size-specific
effects of aquatic refuge availability. There was no trend in max-
imum adult size (n = 20, τ = −0.12, P = 0.47). Nevertheless, we
acknowledge that more work is needed to test the mechanism of
metamorph mortality directly, and we have begun observational
and experimental studies of refuge use for that purpose.
The larger question of how reduced survival through meta-

morphosis affects demographic viability depends on the sensi-
tivity of the population growth rate to changes in adult recruitment
(69). G. porphyriticus clutch sizes range from 15 to 66 ova,
but appear to decline moving northward (45). Based on
this low annual reproductive output, life history theory predicts
that the population growth rate should be more sensitive to
changes in adult survival than equivalent changes in recruitment
(70, 71). However, our data show that adult survival is relatively
invariant (51, 55), suggesting that other vital rates (e.g., adult
recruitment) may play a larger role in population viability. Larval
recruitment in Merrill Brook also remains largely independent of
adult density (Fig. 1): There were no correlations between adult
abundance in year t and larval abundances in years t through t + 5
(n = 15 to 20, jrj < 0.34, P > 0.2). The same pattern occurs in
streams throughout New Hampshire (72), suggesting that factors
other than adult density limit larval recruitment (e.g., nest sites,
parental condition, predation). These complexities underscore the
need for additional demographic modeling and, more generally, the
importance of evaluating species vulnerability to increased envi-
ronmental variability using a stage-based approach to understand
compounding or compensatory effects among life history stages (73).
Models and data show that hydrologic variability is increasing

in the northeastern United States (9, 10, 15), including at the
HBEF (13). Our results suggest that this climatic trend may
be causing the long-term decline of adult G. porphyriticus abun-
dance in Merrill Brook (Fig. 1) by decreasing survival through
metamorphosis (Fig. 3). However, there was no long-term trend in

summer discharge CVs in the Dead Diamond River, possibly due
to other sources of hydrologic variability in the Dead Diamond
watershed (74–76). In a posteriori analysis, we did detect a sig-
nificant increase in the Dead Diamond’s Richards–Baker Flashi-
ness Index (1999 to 2018; n = 20, τ = 0.48, P < 0.01), which
reflects the frequency and speed of short-term changes in
streamflow, and has greater power to detect long-term trends than
the CV (77). We also would not expect hydrologic variability in
Merrill Brook, a first-order stream, to match that of the fifth-order
Dead Diamond River exactly (78), and this mismatch may account
for a lack of a direct correlation between summer discharge CVs
and adult G. porphyriticus abundances (n = 20, r = 0.27, P = 0.25).
In the 4 HBEF streams, where discharge is measured in the
streams themselves, adult abundances (July counts adjusted by
recapture probabilities for adults [padult]; Table 2) declined with
summer discharge CVs (n = 4, τ = 0.04, P < 0.01). We limited our
analyses to discharge CVs based on a priori predictions about the
effects of overall hydrologic variability, thus avoiding exploratory
analyses of alternative hydrologic variables. However, we ac-
knowledge that discharge CVs are a coarse measure of hydrologic
variability, and plan further analyses of these hydrologic data to
isolate proximate components of variability associated with G.
porphyriticus demography (79–81).
This study assesses hydrologic correlates and population-level

consequences of variation in survival through metamorphosis,
but also underscores the challenge of drawing this connection in
species with complex life cycles. Despite a significant decline in
the adult population in Merrill Brook over the last 20 y (Fig. 1B),
there has been no temporal trend in total G. porphyriticus
abundance or larval abundance (Fig. 1A). Based on abundance
alone, then, we cannot conclude that increasing hydrologic var-
iability poses a direct risk to G. porphyriticus populations. We can
conclude, however, that the trend in Merrill Brook makes the
population less resilient to other perturbations by increasing
demographic reliance on a single life history stage: larvae (71, 82,
83). The variability of larval abundances over the last 20 y un-
derscores this risk toG. porphyriticus populations (Fig. 1A), while
a long-term decline in abundance of a terrestrial plethodontid at
the HBEF, Plethodon cinereus (12), raises the possibility of broader
threats to this diverse family of salamanders. It is also likely that
the shift in stage structure has caused the number of breeding

Table 1. Multistate capture–mark–recapture models assessing support for variation in
ψlarva→adult of G. porphyriticus individuals in Merrill Brook and 4 streams in the HBEF, New
Hampshire, as a linear function of CVs of summer discharge

Model AICc ΔAICc AICc wt K

Merrill Brook
Slarva(fixed), S

adult
(•), p

larva
(•), p

adult
(•), ψlarva→adult

(discharge CV) 1,363.95 0.00 0.68 5
Slarva(fixed), S

adult
(•), p

larva
(•), p

adult
(•), ψlarva→adult

(time) 1,365.83 1.88 0.27 8
Slarva(fixed), S

adult
(•), p

larva
(•), p

adult
(•), ψlarva→adult

(•) 1,369.09 5.14 0.05 4
HBEF

Slarva(fixed), S
adult

(•), p
larva

(stream), p
adult

(time), ψlarva→adult
(discharge CV) 4,765.58 0.00 0.68 15

Slarva(fixed), S
adult

(•), p
larva

(stream), p
adult

(time), ψlarva→adult
(•) 4,767.76 2.18 0.23 14

Slarva(fixed), S
adult

(•), p
larva

(stream), p
adult

(time), ψlarva→adult
(stream) 4,769.61 4.03 0.09 17

Transition probabilities represent the probability of larvae surviving from time t to t + 1 and metamorphosing
to the adult stage. Summer discharge CVs for Merrill Brook were based on mean daily discharge values from a
gauge station on the Dead Diamond River, 9.2 km downstream of the confluence. Discharge data for the
Hubbard Brook streams are from weirs on the streams themselves. Parameterization of larval and adult re-
capture probabilities (p) was based on prior analyses (51, 55). Slarva was fixed to 1.0 to ensure that transition
probabilities were unbiased estimates of survival through metamorphosis by removing the assumption that
survival is dependent on the state of an individual at time t. Transition probabilities were modeled as constant,
variable by year (Merrill Brook) and stream (Hubbard Brook), or as a linear function of summer discharge CV.
Second-order Akaike’s information criterion values (AICc), AICc differences (ΔAICc), AICc weights (AICc wt), and
number of estimated parameters (K) for all models are shown. Parameterization for S, p, and ψ is shown in
parentheses. •, constant; discharge CV, variation as a linear function of summer discharge CV; fixed, fixed to 1.0;
stream, variation by stream; time, variation by time.
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G. porphyriticus adults to decline, reducing effective population
size and, therefore, the capacity for adaptive response to future
conditions (84–86). We hope this study promotes additional re-
search on these direct and indirect effects of increasing hydrologic
variability on freshwater species, and on the broader effects of
changing patterns of environmental variability on species with
vulnerable metamorphic stages.

Methods
Study Sites. The primary study site was Merrill Brook, a fishless, first-order
stream in Dartmouth College’s Second College Grant, in northern New
Hampshire. A wetland at the confluence with the Dead Diamond River acts
as a barrier to brook trout (Salvelinus fontinalis) that might enter Merrill

Brook from the larger river. We sampled throughout a 1,000-m section of
Merrill Brook that started at the confluence with the outflow wetland,
encompassing the perennial portion of the stream (54).

We also sampled 4 hydrologically independent first-order streams in the
32-km2 HBEF: Bear Brook, Canyon Brook, Paradise Brook, and Zigzag Brook.
All 4 streams flow into the mainstem of Hubbard Brook, a tributary of the
Pemigewasset River. Sampling occurred along two 500-m long reaches in
each stream. Downstream reaches started at the confluence with Hubbard
Brook, and upstream reaches ended at weirs where long-term water quality
data are collected (87). Distances between downstream and upstream rea-
ches, measured along stream channels, were 400 m in Bear Brook, 0 m in
Canyon Brook, 250 m in Paradise Brook, and 500 m in Zigzag Brook (55). We
pooled G. porphyriticus individuals across the 2 reaches so that our unit of
replication was a 1,000-m section of each stream, matching the scale of the
Merrill Brook data. Unlike Merrill Brook, predatory brook trout (S. fontinalis)
are present in the lower reaches of the HBEF streams (88).

Hydrology of Merrill Brook and the HBEF streams is characterized by high
spring discharge due to melting snow and high discharge events throughout
the year associatedwith isolated storms. Base flow conditions usually occur in late
summer and early fall (13). The study streams drain small, high-gradient head-
water watersheds, with catchment areas ranging from 0.96 to 3.32 km2 and
average slopes ranging from 18.73 to 27.04°. Bank-full channel widths range
from 2 to 4 m; the majority of stream habitats are categorized as riffles and
pools (89, 90); and the dominant substrate types are cobble, boulder, and bed-
rock, with low embeddedness and little fine sediment (e.g., sand, silt). Dominant
tree species in forests surrounding these streams are Acer saccharum, Fagus
grandifolia, Betula alleghaniensis, Picea rubens, Abies balsamea, and Betula
papyrifera (54). The streams have low conductivity (12.0 to 15.0 μS·cm−1), slight
acidity (pH of 5.0 to 6.0), high dissolved oxygen content (80 to 90% saturation),
and moderate midday temperatures in the summer (13.0 to 17.0 °C) (13, 54, 91).
Other salamanders encountered in Merrill Brook and the HBEF streams were
Eurycea bislineata and Desmognathus fuscus (both Plethodontidae).

Survey Methods. We used a cover-controlled, active search sampling method
in all surveys (92). Moving upstream, we turned rocks within the channel and
along the edge measuring 64 to 256 mm in diameter (cobble). In each sur-
vey, a constant search effort was maintained by turning just over 1 haphaz-
ardly selected cover object per meter of stream length. We used aquarium dip-
nets to capture salamanders, including those flushed by the current (54, 55).
The life history stage (larva vs. adult) was recorded for all individuals based on
the presence of external gills (47, 93), so metamorphosing individuals were
recorded as larvae until external gills were lost, and then as adults. Salaman-
ders were individually marked with visible implant elastomer from Northwest
Marine Technologies (94).

We conducted capture–mark–recapture surveys of Merrill Brook during 3-d
periods in mid-June, mid-July, and mid-August of 1999 to 2004. We continued
single annual abundance surveys of Merrill Brook in mid-July of 2005 to 2018.
Methods were identical to those used in the earlier surveys, but animals were
not examined for existing marks and no new animals were marked (51, 54). In
the HBEF streams, capture–mark–recapture surveys were conducted mid-June
through mid-September of 2012 to 2014. Each stream was surveyed 9 times
each field season, for a total of 27 surveys per stream over the 3-y study period.
We conducted 3 surveys of each stream during three 2-wk periods distributed
evenly throughout the field season, for a total of 9 surveys per stream each
summer and 27 surveys per stream over the 3-y study period. Streams were
surveyed in a random order within each of these 2-wk sampling periods (55).

Quantifying Hydrologic Variability. To quantify variability of stream discharge in
Merrill Brook, we obtained mean daily discharge data from the nearest US
Geological Survey gauge on the Dead Diamond River, 9.2 km downstream of the
confluence with Merrill Brook (95). We then calculated the mean and CV of
summer discharge (June 1 to August 31) for each year of our study, as well as the
discharge CVs for the intervening nonsummer periods (September 1 to May 31).
The CV is the ratio of the SD to themean, a unitless measure of relative variability
that can be compared across samples with different means. To assess the con-
tributions of extreme low and high flows to summer discharge CVs, we calcu-
lated the number of days each summer below the fifth percentile and above the
95th percentile of mean daily discharge values over the entire study period.

Stream discharge has been monitored at the HBEF since as early as 1956
(96). However, a switch to electronic sensors in 2013 made continuous flow
data available at 5-min intervals, whereas readings were recorded at irreg-
ular intervals prior to 2013. We only used data from 2013 and 2014 to
quantify discharge variability in the HBEF streams to ensure that inconsistent
sampling intervals and rates did not bias our analyses. We calculated mean
daily discharge for each stream and used these values to calculate means

A

B

Fig. 3. Relationships between CVs of summer discharge and ψlarva→adult in
Merrill Brook (A) and 4 streams in the HBEF (B), New Hampshire. Transition
probabilities represent the probability of larvae surviving from time t to t + 1
and metamorphosing to the adult stage, estimated on an annual interval for
Merrill Brook and on a monthly interval for the Hubbard Brook streams (Tables
1 and 2). Summer discharge CVs for Merrill Brook were based on mean daily
discharge values from a gauge station on the Dead Diamond River, 9.2 km
downstream of the confluence. Discharge data for the Hubbard Brook streams
are from weirs on the streams themselves. Hubbard Brook summer discharge
CVs were calculated by pooling mean daily discharge values from the summers
of 2013 and 2014, when sampling occurred at regular 5-min intervals. Linear
regression lines are plotted to illustrate trends. Labels adjacent to Merrill Brook
points are years; labels adjacent to Hubbard Brook points are stream names.
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and CVs of summer discharge, pooling discharge data across summers. We
also calculated the discharge CV for the period between summers 2013 and
2014 (i.e., September 1, 2013 to May 31, 2014).

Estimating Demographic Parameters. To test for long-term population trends
in Merrill Brook, we generated indices of larval and adult abundance by
correcting annual count data from July surveys for stage-specific recapture
(i.e., detection) probabilities (97, 98). Previous analysis of the first 6 y of data
showed that recapture probabilities (p) differed between larvae and adults,
but did not differ by year (51). Because detection did not differ over time,
counts (Clarva and Cadult) were reliable indices of relative abundances of each stage,

but converting counts to total abundance estimates (i.e., N̂larva =C larva=p̂larva)
better reflects the stage structure of the population.

We implemented multistate capture–mark–recapture models in Program
MARK to estimate survival through metamorphosis in Merrill Brook and the
HBEF streams (99, 100). Multistate models estimate apparent survival (S) and
recapture (p) probabilities of larvae and adults, and ψlarva→adult. Transition
probability is the conditional probability that an individual in one state (i.e.,
stage) at time t will be in the other state at t + 1, given that the animal is
alive at t + 1. Best-fitting multistate models for Merrill Brook (1999 to 2004)
and the 4 HBEF streams (2012 to 2014) were identified in previous analyses
(model selection results are provided in refs. 51, 55), and we used these
models as the foundation for the current analysis. For Merrill Brook, the
best-fitting model had time-invariant larval and adult survival and recapture
probabilities (Slarva, Sadult, plarva, and padult), and ψlarva→adult varied by year. In
the best-fitting model for the HBEF streams, larval and adult survival prob-
abilities (Slarva and Sadult) were constant across streams, plarva varied by stream,
padult varied by time, and ψlarva→adult varied by stream.

Building on these best-fitting model structures, we assessed support for
relationships between stream discharge CVs and survival through meta-
morphosis in Merrill Brook and the HBEF streams. Specifically, we used
Akaike’s information criterion corrected for small sample sizes (AICc) (101) to
select the most parsimonious model structure from candidate models where
ψlarva→adult was either constant, variable by year (Merrill Brook) and stream
(HBEF), or a linear function of summer discharge CV. We fixed Slarva at 1.0 in
these models, which ensures that ψlarva→adult is an unbiased estimate of
survival through metamorphosis by removing the assumption that survival is
dependent on the state of an individual at time t (102). Candidate models
were ranked by second-order AIC differences (ΔAICc) (103). Relative likeli-
hood of each model in a candidate set was then estimated with AICc weights
(104). When rankings of the top models were ambiguous [i.e., ΔAICc < 2.0

(103)], we used pairwise LRTs to compare model fit. A significant LRT result
(P < 0.05) indicates greater support for the model with more parameters; a
nonsignificant LRT result indicates equal support for both models, in which
case the model with fewer parameters is more parsimonious (105).

Demographic probabilities in Merrill Brook were estimated on an annual
interval by collapsing data from the 3 surveys each summer into a single
observation for each individual (i.e., captured, not captured), representing
that individual’s overall capture history for the summer [mid-June through
mid-August (106)]. Therefore, transition probabilities (ψlarva→adult) apply to
the interval from mid-June of year t through mid-June of year t + 1, span-
ning both summer and nonsummer periods. For the HBEF streams, obser-
vations from the 3 surveys in each 2-wk survey session were collapsed into a
single observation for each month of the field season (e.g., mid-June, mid-
July, mid-August) and transition probabilities were estimated for a monthly
interval. These monthly probabilities apply throughout the sampling period,
from mid-June of 2012 to mid-August of 2014, spanning both summer and
nonsummer periods, like the Merrill Brook estimates.

Statistical Analyses. We used nonparametric Mann–Kendall tests to assess
long-term trends in G. porphyriticus abundance estimates and summer dis-
charge CVs over the entire study period in Merrill Brook (1999 to 2018).
Mann–Kendall tests control for temporal autocorrelation in the dependent
variable (107). We also used Mann–Kendall tests in other analyses where
sample sizes were too small to justify parametric Pearson product-moment
correlation analyses (108).
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