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Opinion
Glossary

Admixture: the formation of novel genetic combinations through hybridization

of genetically distinct groups.

Community: an assemblage of at least two interacting species that live in the

same geographic area.

Community ecology: the study of the interactions between species in

communities on many spatial and temporal scales, including the distribution,

structure, abundance, demography, and interactions between coexisting

populations.

Community genetics: the study of the genetic consequences of species

interactions in a local community, including how a single foundational (or

keystone) species shapes specific genotypic and phenotypic characteristics of

other members of the community.

Dispersal: permanent movement away from an origin (birthplace) and

settlement at a new location.

Eco-evolutionary dynamics: the interaction and feedback between ecological

and evolutionary processes.

Exon capture: a technique for sequencing all (or a subset) of the protein-coding

genes in a genome (known as the exome). It consists of first isolating only the

subset of DNA that encodes proteins (known as exons), and then sequencing

that DNA using high-throughput DNA sequencing technology.

Genomics: the study of the structure, function, or variation in a large number of

genes or markers throughout a genome.

Hybridization: interbreeding between individuals from genetically distinct

populations.

Introgression: the incorporation of genes from one population into another

through hybridization that results in fertile offspring that further hybridize and

backcross to parental populations.

Landscape community genomics (LCG): the application of genomics to study

how neutral and adaptive genomic variation within and among populations of

multiple interacting species within communities is shaped by the interaction of

abiotic and biotic factors across diverse landscapes.

Landscape genetics: the study of the influence of landscape or climate features

on neutral genetic variation within and among populations.

Landscape genomics: the study of the influence of landscape or climate
Extrinsic factors influencing evolutionary processes are
often categorically lumped into interactions that are
environmentally (e.g., climate, landscape) or communi-
ty-driven, with little consideration of the overlap or
influence of one on the other. However, genomic varia-
tion is strongly influenced by complex and dynamic
interactions between environmental and community
effects. Failure to consider both effects on evolutionary
dynamics simultaneously can lead to incomplete, spuri-
ous, or erroneous conclusions about the mechanisms
driving genomic variation. We highlight the need for a
landscape community genomics (LCG) framework to
help to motivate and challenge scientists in diverse
fields to consider a more holistic, interdisciplinary per-
spective on the genomic evolution of multi-species com-
munities in complex environments.

The evolutionary play in the genomic age
The analogy of the ‘ecological theater and the evolutionary
play’ has been present in the scientific literature for at least
the past five decades [1]. In recent years there has been
renewed emphasis on the importance of resolving the
interplay between the ‘actors’ and the ‘stage’ that create
the evolutionary play (i.e., interacting species and the
abiotic environment in which those interactions take place)
[2,3]. Explicit consideration of the simultaneous, interac-
tive effects of both biotic and abiotic impacts on evolution-
ary processes, however, has not been fully incorporated
into contemporary approaches aimed at elucidating pat-
terns of genomic variation in populations, species, and
ultimately communities. Specifically, the burgeoning field
of landscape genetics (see Glossary) interprets patterns of
genetic divergence and diversity based primarily on abiotic
or physical variation, whereas community genetics inter-
prets those patterns based on interactions among species
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[4,5]. This relatively-narrow focus on either abiotic or biotic
drivers of genomic variation is understandable given the
past limitations of genetic tools. Fortunately, recent
advances in genomic techniques make it feasible to consid-
er the simultaneous influence of the abiotic ‘stage’ and
biotic ‘actors’ on the ‘evolutionary play’.
features on neutral and adaptive genetic variation (genome-wide) within and

among populations.

Metacommunity: a group of spatially discrete communities of multiple species

linked by dispersal.

Metagenomics: the analysis of DNA from the many species contained in an

environmental sample, facilitated by high-throughput sequencing.

Massively-parallel sequencing: new DNA sequencing technologies that

produce millions of short reads (25–500 nt) in a short time (1–5 days) with

reduced cost.
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The genomics age offers tremendous advances in the
availability of multi-species genome-wide data and related
bioinformatics methods [6,7]. Until now, a comprehensive
analytical framework for resolving the drivers of genome
evolution has been lacking. With such a framework, geno-
mics promises to increase our understanding of previously
intractable questions in evolutionary ecology, population
genetics, and conservation biology, including: (i) how do
abiotic and biotic factors interactively (and independently)
influence patterns of gene flow, drift, and selection in
multiple interacting species; (ii) how consistent or general
are patterns of co-adaptation among species in geographi-
cally isolated communities that reside in different environ-
mental conditions; and (iii) how will environmental change
impact upon community composition and subsequent ge-
nomic co-evolution?

More broadly, genomics offers unprecedented resolution
and statistical power to elucidate evolutionary patterns,
including genotype-by-environment interactions [8],
effects of local co-adaptation on gene flow [9,10], hybrid-
ization [11,12], and in delineation of conservation units
based on multiple interacting species [13,14]. Nevertheless,
realizing this potential will require a fundamental concep-
tual and analytical shift in assessment of genomic varia-
tion. Our goal here is to show the need for this conceptual
shift by introducing a novel LCG framework that merges a
diverse set of sub-disciplines in evolutionary biology and
ecology.
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Why LCG?
The study of evolution and adaptation in nature should
consider how abiotic and biotic drivers influence various
evolutionary processes and resulting patterns of genomic
variation. Unfortunately, analyses and interpretation of
patterns of genomic variation are often biased by the
particular discipline with which researchers identify them-
selves (e.g., as a landscape geneticist, community geneti-
cist, or landscape epidemiologist).

Landscape genetics generally lacks consideration of how
localized interactions among species affect genomic evolu-
tion (e.g., competition, predation, co-adaptation, etc.), and
instead focuses on the spatial arrangement of populations
and the structure of the intervening habitat [15]. Funda-
mental evolutionary processes such as dispersal are often
viewed as stochastic and independent of local ecological
interactions, partly because the effects of co-adaptation on
dispersal are poorly understood [16]. In cases where mech-
anistic understanding is limited, simply examining pat-
terns of genetic variation in interacting species can
highlight important differences in the drivers of genetic
structure (Figure 1). For example, in a symbiotic beetle–
fungal system, beetle genetic variation was dependent on
environment and host density (pine tree volume) whereas
fungus genetic variation was not [17]. In a different host–
parasite system, the genetic structure of the parasite
better predicted host population structure than did host
genotypes [14]. Despite the value of testing for concordant
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Figure 2. A perspective timeline describing the origins of landscape community

genomics (LCG). LCG melds the rich history of genetics and ecology, including

foundations in population genetics, landscape ecology, and community ecology.

Arrows point to the conceptual progression through time from each main discipline

to the corresponding sub-discipline. In parentheses are the approximate dates that

each discipline or approach was established [4,5,62–67].
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patterns of population genetic variation in interacting
species, there are relatively few empirical examples.

Similarly, community genetics lacks consideration of im-
portant spatial and environmental processes, and generally
focuses on how a single foundational (or keystone) species
shapes the evolution of other members of the local commu-
nity [18]. There is a growing body of empirical evidence that
species interactions (e.g., mutualism, competition, preda-
tion, hybridization, disease spread, etc.) are context-depen-
dent, with significant variation in the strength of species
interactions and resulting patterns of coexistence along
spatial and abiotic gradients [19,20]. For example, ecological
and evolutionary interactions among stream-dwelling sal-
monids are highly context-dependent and can be driven by
variation in abiotic and biotic factors over time and space
[12,21]. Climate (e.g., temperature) can play a key role in
host–pathogen interaction and the spread of disease [22],
and third-party interactions (e.g., plant–soil microbial com-
munities) can enhance competition of an invasive plant
species by way of a growth-enhancing bacteria [23]. Clearly,
context-dependent interactions occur across diverse trophic
levels and taxa, but how context-dependent interactions
intensify or buffer the effects of species interactions on
genomic variation is poorly understood [19].

What is LCG?
LCG is the study of how neutral and adaptive genomic
variation within and among populations of interacting spe-
cies is shaped by both abiotic and biotic factors across diverse
landscapes. LCG is distinct from other approaches in that
it explicitly tests whether patterns of genomic variation in
multiple species vary as a result of inter-specific interactions
and whether these interactions vary across landscape
or environmental gradients. In other words, LCG attempts
to quantify the effects of eco-evolutionary processes occur-
ring across complex environments where selective pres-
sures, gene flow, and genetic drift interact in time and
space. This includes genome � genome interactions (e.g.,
hybridization, antagonistic or mutualistic co-evolution,
etc.), genome � environment interactions (e.g., parallel ad-
aptation, demography, dispersal, etc.) and, ultimately, gen-
ome � genome � environment interactions (e.g., context-
dependent interactions among species) that shape the pat-
terns of neutral and adaptive genetic variation.

LCG brings together a rich history of approaches in
genetics and ecology, including foundations in population
genetics, landscape ecology, and community ecology
(Figure 2). With such a robust theoretical foundation, the
recent explosion in genomic sequencing could prove to be the
necessary catalyst in unraveling the complex interactions of
geography, ecology, and evolution shaping the genomes of
entire communities of species [24–26], thus opening the
curtain on a new and exciting act in the evolutionary play.

What types of data and sampling are useful in LCG?
LCG studies focus on multiple interacting species distrib-
uted along landscape or environmental gradients. Funda-
mentally, these studies require three distinct datasets:
genomic data on the focal species, ecological data on
those species (e.g., occurrence, abundance), and environ-
mental data across the study area. Even with these data,
landscape level eco-evolutionary dynamics are challeng-
ing to causally attribute to key biotic interactions or
environmental conditions because both species interac-
tions and environmental conditions vary spatially and
temporally (e.g., context-dependence or environmental
gradients). Partly, the solution requires capitalizing on
genetic and ecological data sources (e.g., measures of
demographic connectivity to complement measures of
genetic connectivity [27]), but it also requires strategic
sampling across abiotic and biotic conditions.

Ideally, ecological and environmental data – the inde-
pendent variables in LCG models – should be spatially
(and if possible, temporally) diverse to capture strong
environmental gradients and key moments in community
structure and function (e.g., before and after a disturbance
event, introduction of an invasive species, or colonization of
novel habitat). Replication across biotic and abiotic gradi-
ents is crucial to correctly identify drivers of genomic
diversity because community composition is also a direct
result of environmental processes, thus further complicat-
ing our ability to correctly identify the sources of abiotic
and biotic variation influencing genomic diversity. Often,
this will require combining genomics data (individual,
population, and community level) with modeled or remote-
ly sensed climatic and landscape data to identify environ-
mental drivers of genomic variation and fine-scale data on
community composition, abundance, or occurrence pat-
terns of interacting species. Gathering the necessary fi-
ne-scale data is not trivial, and this might partially explain
the emphasis on geographic and abiotic variables in most
landscape genetic studies. However, these data are crucial
to advance understanding of how landscape � community
interactions shape genomic variation within and among
species.

Furthermore, the LCG approach requires the identifi-
cation of candidate adaptive genes controlling local adap-
tation in the focal species, preferably with known or
potential effects on species interactions [28]. Future re-
search can capitalize on recent genomic advances that are
key to the emerging field of LCG, and are providing un-
precedented opportunities to study genome-wide markers
under selection in multiple non-model species (rather than
focusing on specific questions genomics can answer, we
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Box 1. LCG case study 1: the impact of climate on

hybridization and introgression

LCG approaches were used to understand how interactions between

landscape features, climatic gradients and change, invasion dy-

namics, and natural selection influenced introgression between a

native (Oncorhynchus clarkii lewisi) and non-native (Oncorhynchus

mykiss) trout. Landscape features, namely stream gradient and

elevation, appear to play a role in influencing introgression across

space [68], but interactions between precipitation (a surrogate for

stream flow) – across space and climate-induced changes over time –

as well as distance to the source of the O. mykiss, strongly explained

spatiotemporal variation in introgression, with recent climatic change

facilitating invasive hybridization [12]. This is particularly concerning

because selection, in general, appears to strongly favor the native

taxa [69]. Nevertheless, subsequent genome-wide scans have

identified superinvasive genes from the non-native O. mykiss that

might have been driven to high frequency by natural selection

[37]. Thus, some non-native genes are invading the native genome

(gene pool) despite strong genome-wide selection against O. mykiss

(outbreeding depression [70]). That is, some non-native genes might

be selected for (depending on the environment), while most non-

native genes are selected against. Given the strong role of climate in

influencing introgression between these fish, climate change is likely

to play a crucial role in determining future patterns of neutral and

adaptive introgression between these species.
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instead refer readers to excellent, recent publications that
give greater details on the use of the following techniques
in practice [6,24,25,29]). Novel exon-capture techniques,
for example, target areas in or near genes of known or
suspected function, allowing capture of neutral and adap-
tive gene markers [30]. Targeted sequencing of exons is
also useful for LCG because multiple divergent species can
be sequenced for the same exons [30,31]. Various forms of
RAD sequencing (restriction site-associated DNA sequenc-
ing) can be applied to any non-model species because it
requires no genomic resources [29]. A relatively inexpen-
sive version of RAD-seq is targeted capture of thousands of
informative (highly polymorphic) RAD loci, and this can
cut costs and thereby facilitate multispecies LCG studies
[24]. Finally, metagenomic techniques are potentially a
useful genetic technology for LCG-type studies in the
future because these techniques offer the ability to yield
DNA sequences for multiple species simultaneously [32].

LCG can answer previously intractable questions in eco-
evolutionary biology
The emerging LCG perspective and approach can help to
address previously confounded and intractable questions
in community ecology and evolutionary biology. To illus-
trate this we use examples from a range of taxa and sub-
disciplines, including examples from conservation genetics
and community co-evolution. Finally, we discuss a common
conceptual gap in current studies that underscores the
importance of the LCG approach: the influence of commu-
nity dynamics on gene flow.

Accounting for evolution in conservation and

management

LCG offers a new dimension in conservation management
by broadening our understanding of how current and
future change might impact upon evolutionary processes
at the community and ecosystem scales. Maintaining popu-
lations and their adaptive potential requires preservation
of life-history variation, connectivity corridors among
populations, and genetic variation within and among popu-
lations. Thus, most conservation strategies have focused
on reducing vulnerability (i.e., sensitivity and exposure) to
climate and human stressors, increasing adaptive capacity
(i.e., resiliency), and anticipating and facilitating ecological
transitions (e.g., range-shifts and resulting species addi-
tion or loss) that are caused by the changing environmental
conditions [33].

Clearly, genetic data are valuable for advancing our
understanding of species and community vulnerability to
local environmental conditions, and shifts in those condi-
tions, but there are very few instances where genetic data
have been used in this context, especially for multiple
interacting taxa. Genetic structure and diversity represent
species’ sensitivity and adaptive capacity, both of which are
key elements of assessing vulnerability of populations
[34]. The more-holistic approach offered by LCG can better
inform vulnerability assessments over large, ecologically
diverse landscapes, which is increasingly important for
conservation efforts that seek to increase resiliency in
natural ecosystems, maintain important eco-evolutionary
dynamics, and avoid biodiversity loss.
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LCG can also offer insight into eco-evolutionary rela-
tionships among native and non-native species. For exam-
ple, hybridization (or the lack thereof) arises from localized
interactions between species, but is often viewed as a
consequence of co-occurrence alone (i.e., if species occur
together and can interbreed, they will), which places the
emphasis on abiotic and spatial predictors of co-occurrence.
However, similarly to other ecological interactions, the
localized interactions that promote or prevent hybridiza-
tion are context-dependent. There is growing evidence that
hybridization dynamics can be influenced by interactions
between community and environmental sources of selec-
tion, ultimately resulting in complex patterns of genetic
admixture and adaptive evolution [11,35]. LCG gives us
the framework in which to identify how abiotic and biotic
drivers affect hybridization rates among species whether
naturally sympatric or allopatric (Box 1). Adaptive intro-
gression, for example, has been shown to counteract an-
thropogenic habitat change (e.g., the use of insecticide to
control mosquito vectors of malaria was counteracted by
introgression of insecticide-resistance genes from one mos-
quito species into another) [36]. Adaptive introgression is
also of interest because of the role it plays in shaping
genome-wide patterns of invasive admixture in species
of conservation concern (Box 1) [11,37]. Additional work
will be necessary to describe the role of biotic and abiotic
interactions affecting dynamics of adaptive or maladaptive
introgression, or how introgression can influence other eco-
evolutionary dynamics such as dispersal.

Communities as co-evolving units

The LCG framework is necessary to quantitatively test
complex community versus environmental interactions in
co-evolving communities. Currently, relatively few exam-
ples of this quantitative approach exist in the community
genetics and landscape genetics literature. Community
genetic studies can be further improved by testing whether
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spatiotemporal patterns of environmental variation
change the strength or pattern of genetic structure that
foundation species impose on local communities [18]. In the
case of co-evolution between humans and dairy cattle,
Box 2. LCG case study 2: gene–culture co-evolution in humans a

The LCG approach can provide mechanistic insight on co-evolutionary

dynamics by combining neutral and adaptive gene markers from

multiple interacting species across strong spatiotemporal selection

gradients, then testing for interactions between species, genomes, and

the environment (see Figure 2 in main text). Cultural co-evolution drove

the correlated spatial genetic structuring of neutral and adaptive

(selected) genes in both cattle (Bos taurus) and humans across Europe

[38] (see Figure I). Genes associated with milk production in cattle [aS1-

casein (CSN1S1), b-casein (CSN2), aS2-casein (CSN1S2), k-casein

(CSN3), b-lactoglobulin (LGB), and a-lactalbumin (LAA)], and the lactase

(A) 

(C) 

Figure I. Co-evolution drove the spatial genetic structuring of milk gene diversity in ca

or fully understood without a landscape community genomics (LCG) approach using b

understanding of spatiotemporal cultural differences). The four synthetic maps show g

the lactase persistence allele (allowing milk digestion) in humans [38]. The broken blac

early Neolithic milk cow pastoralists inferred from archaeological data (e.g., milk resi

cline or gradient across Europe originating in the Fertile Crescent (Iraq, Iran, and 

reproduced, with permission, from [38], �2003 Macmillan Publishers Ltd, panel C is a

permission, from [72], �1994 Princeton University Press.
adaptive and neutral markers were necessary to illumi-
nate specific patterns of genetic structure driven by farm-
ing (Box 2) [38]. Recent landscape genetics studies have
adopted multi-species approaches to test hypotheses
nd cattle

persistence allele in humans, have strikingly similar spatial patterns

across Europe [38] (GenBank accession numbers for the cattle milk

genes: X59856, X14711, M94327, X14908, X14719, AF249896). However,

neutral genetic markers in both species show a different spatial pattern

from milk genes, and suggest a similar demographic movement (or

colonization) pattern from the Fertile Crescent area across Europe.

These types of multi-species genomic approaches are increasingly

feasible using massively-parallel sequencing that allows assessment of

both neutral and adaptive gene markers in interacting species sampled

through time and space (e.g., across complex landscapes).

(B)

(D)
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across species and landscapes, but without considering the
effects of local community composition or landsca-
pe � community interactions [8,39,40]. We believe it is
crucial that future studies start to consider LCG perspec-
tives to explicitly test hypotheses of the effects of commu-
nity (species) interactions on genetic structure within and
between populations and environments.

At some level, metagenomics already embodies the
LCG perspective and approach by elucidating variation
in microbial community structure and distribution across
abiotic gradients (e.g., temperature and pH) [41]. Overall,
metagenomics is pioneering new ways of thinking about
microbial (multi-species) systems, where communities are
becoming the units of evolutionary and ecological study
among bacteria, archaea, protists, and fungi [13]. Metage-
nomic approaches can be combined with higher-resolution
genome-wide techniques (e.g., exon capture or RAD-seq) to
study diversity within and between a wider range of taxa.
Overall, these combined techniques could be used to iden-
tify important broad spatiotemporal interactions between
microbial, plant, invertebrate, and even vertebrate spe-
cies. For example, in conservation monitoring, this com-
bined approach could be used to test if the arrival of an
invasive species causes changes in the evolutionary dy-
namics of native communities, especially gene diversity
and gene flow, or if the strength of the changes is influ-
enced by differences in local environment [42].

Community dynamics affect gene flow

In the past decade, ecologists have shown renewed interest
in how dispersal affects the patterns of species coexistence
and biodiversity. In particular, both the influential neutral
theory of biodiversity [43] and metacommunity theory [44]
emphasize the importance of understanding dispersal rates
to explain species coexistence in local communities. This
body of theory focuses primarily on the demographic effects
of dispersal – as a subsidy to local populations that prevents
competitive exclusion. In metacommunity theory there has
been some effort to incorporate the genetic effects of dispers-
al (i.e., gene flow) on competitive interactions [45]. However,
the LCG framework offers tremendous potential for explor-
ing eco-evolutionary interactions among dispersal, gene
flow, and species interactions, and, more broadly, for explor-
ing the underlying abiotic and biotic drivers of dispersal
evolution.

The LCG framework incorporates species interactions
in analyses of genomic variation in complex landscapes.
Competitive asymmetries among co-occurring species are
known to influence rates of emigration and immigration in
local communities [46], leading to different rates of gene
flow in competitively dominant and inferior species
[47]. Thus, not only can competitive interactions play a
central role in landscape-level patterns of genetic struc-
ture, but they also set the stage for evolutionary feedbacks
between gene flow and local ecological interactions [48]. In
competitively inferior species, high gene flow might con-
strain incremental evolution of locally adapted competitive
traits, while increasing the probability of adaptation to
novel conditions by maintaining high levels of standing
genetic diversity [49,50]. In competitively dominant spe-
cies, low rates of gene flow might promote incremental
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competitive evolution, whereas standing genetic diversity
should be reduced relative to the competitively inferior
species, constraining evolutionary responses to novel se-
lective forces.

These and other evolutionary processes (e.g., spread of
novel mutations, heterozygote advantage) could easily be
missed with traditional landscape genetics methods that
focus on geographic or habitat-related effects on gene flow
[51]. Unraveling geographic, ecological, and evolutionary
effects on landscape genetics relies on the combination of
neutral and non-neutral markers provided by genomics
data, as well as on the multi-species and multi-factorial
LCG approach (Figure 1). Great advances could be made
simply by accounting for community composition in land-
scape genetic models, allowing local biotic effects to com-
pete with habitat and geographic effects in statistical
models [52,53]. Further, it is possible to discern local
adaptation (e.g., in a competitive dominant) by comparing
patterns of genetic structure of neutral and non-neutral
markers, and by testing for patch-specific effects (biotic or
abiotic) on genetic structure.

In addition to advancing understanding of how ecologi-
cal dynamics influence spatial patterns of genomic varia-
tion, the LCG framework is ideal for testing hypotheses for
the evolution of dispersal – one of the most challenging
areas of research in ecology and evolution [16,54]. The most
broadly applicable hypothesis predicts that dispersal is
maintained by spatial and temporal variability in the
quality of local habitat patches [55–57]: temporal variabil-
ity promotes movement away from an initial location;
spatial variability creates the possibility that dispersal
will be rewarded with increased fitness. A few empirical
studies support this hypothesis (e.g., [57,58]), but empiri-
cal tests have been impeded by the difficulty of linking
variation in individual fitness (e.g., between dispersers and
non-dispersers) to spatiotemporal variation in specific
components of local habitat quality (e.g., interspecific com-
petitive effects [59] vs abiotic conditions [60]).

The LCG approach offers a way forward by providing a
conceptual framework for integrating information on patch
geography (e.g., inter-patch distance), species composition
and abiotic conditions within patches, and the spatial struc-
ture of neutral and non-neutral loci. Specifically, the habitat
quality hypothesis would predict that rates of neutral gene
flow should increase with spatiotemporal variation in key
components of local habitat quality (biotic vs abiotic), after
correcting for patch geography. In addition, spatiotemporal
patterns in non-neutral loci can provide insight on the
specific dispersal traits under selection [61].

Concluding remarks
Landscape genetics and community genetics have devel-
oped as largely-independent disciplines, growing in popu-
larity and importance, but without capitalizing on the
complementary nature of the two approaches. Intuitively,
however, we know that natural systems comprise multiple
species that interact and exist in highly-variable abiotic
environments. We believe that combining landscape and
community genetics approaches and perspectives is crucial
to illuminating the factors driving eco-evolutionary pro-
cesses occurring within ecosystems and across landscapes.
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The recent explosion in genomic sequencing and genotyp-
ing techniques – applicable to any species – will help
biologists to exploit the enormous potential of LCG
approaches. Not only does the LCG approach and perspec-
tive represent an exciting frontier in the integration of
basic evolutionary and ecological research, but it is also a
crucial tool for understanding how interrelated and accel-
erating rates of biodiversity loss and global environmental
change will affect the evolutionary trajectory of species and
natural communities.
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