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Testing for Microgeographic Effects on the Strength of Interspecific

Competition

Jon M. Davenport1 and Winsor H. Lowe2

Local adaptation to an environment can vary across very fine scales—as little as a few meters in some species, kilometers
in others. This divergence at microgeographic scales has been linked to dispersal ability and could be responsible for
geographic variation in the strength of species interactions. For example, the spread of maladaptive traits across short
distances could lead to inferior performance and local extinctions across the landscape. We utilized a model study
system (headwater streams of New Hampshire) with known differences in dispersal, gene flow, and intraspecific
competition to test for microgeographic variation in interspecific competition. We conducted a common garden
experiment and measured survival and growth of larval Spring Salamanders from different stream reaches (fish and
fishless) in response to the presence of conspecific salamanders or heterospecific Brook Trout fingerlings. We predicted
that Spring Salamanders from reaches with fish would have higher competitive performance with fish than näıve
salamanders from reaches without fish. No significant differences were detected in salamander survival. Overall
salamander growth was negative but was not affected by reach, heterospecific competitor, or the interaction between
those two factors. Based on our results, microgeographic variation does not appear to be important in determining the
strength of interactions between larval Spring Salamanders and Brook Trout. Salamander dispersal between our
collection reaches is possible, and high gene flow of maladaptive traits could be responsible for the overall negative
growth patterns. Our research highlights the importance and complexity of testing species interactions in model
systems with known microgeographic variation.

D
UE to the relatively reduced dispersal ability of
many amphibians, population divergence has
recently been documented at microgeographic

scales (Storfer et al., 1999; Lowe and McPeek, 2012). Indeed,
local adaptation in amphibians can occur across scales as
small as a pond basin or headwater stream drainages
(Freidenburg and Skelly, 2004; Skelly, 2004; Lowe et al.,
2006a, 2008, 2012). However, few studies have expanded to
examine how such microgeographic adaptation affects the
strength of species interactions (Fauth, 1998). In one
example, stream salamanders from populations with fish
displayed stronger anti-predator behaviors (decreased feed-
ing rates and increased escape responses) than individuals
from populations without fish, which translated into
higher short-term survival with fish in experimental trials
(Storfer and Sih, 1998; Storfer, 1999). Additionally, indi-
viduals from populations with fish that received gene flow
from fishless populations exhibited weaker anti-predator
responses than those from isolated populations with fish.
Therefore, it appeared that greater isolation allowed for
stronger adaptive response to fish predators. Stream
amphibians may represent a useful model system to explore
the repercussions of microgeographic variation in species
interactions more broadly, particularly because the linear
structure of stream networks offers more tractable gradients
of isolation than terrestrial (or wetland) systems (Grant et
al., 2007).

Previous work in a headwater stream system with amphib-
ians has demonstrated that interactions (e.g., competition
and predation) between Spring Salamanders (Gyrinophilus
porphyriticus) and Brook Trout (Salvelinus fontinalis) can be
very intense. As with Trinidian guppies, the risk of extirpa-
tion for Spring Salamanders is lowered when barriers provide
upstream refuges from Brook Trout (Resetarits, 1997). Brook
Trout are restricted to lower reaches of many streams because
of landscape barriers (e.g., waterfalls) and man-made culverts

(Warren et al., 2008). In those populations without trout,
Spring Salamanders act as top predators in stream food webs
(Beachy, 1994, 2005; Bruce, 2008). In populations with trout,
the interactions are stage specific, where larval Spring
Salamanders are prey for adult Brook Trout and inferior
competitors to fingerling Brook Trout (Resetarits, 1991; Lowe
et al., 2004).

Despite these highly asymmetric interactions between
Spring Salamanders and Brook Trout, the two species still
co-occur in the lower reaches of headwater streams
(Resetarits, 1995; Lowe et al., 2004). Recent work has
demonstrated that the morphology of dispersing Spring
Salamanders differs from the morphology of non-dispersers
(Lowe and McPeek, 2012) and that these differences may
carry over to influence intraspecific competitive interac-
tions. Specifically, Davenport and Lowe (2016) found that
the strength of intraspecific competition varied with
dispersal and gene flow between downstream and upstream
reaches of headwater streams. This posits that interspecific
interactions between Spring Salamanders and Brook Trout
could also vary significantly along individual streams, as a
function of direct exposure to Brook Trout in downstream
versus upstream reaches.

Using a substitutive design, we conducted a short-term
common garden experiment to test for microgeographic
variation in competitive strength between larval Spring
Salamanders and fingerling Brook Trout. Larval Spring
Salamanders were collected from populations with and
without exposure to Brook Trout separated by 200–500
meters (Fig. 1). We predicted that the origin of Spring
Salamanders (from reaches with fish vs. reaches without fish)
would affect performance in our experiment. Specifically, we
predicted that Spring Salamanders from reaches with fish
would have higher competitive performance (i.e., higher
survival and growth) with fish than naı̈ve salamanders from
reaches without fish.
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MATERIALS AND METHODS

Hubbard Brook study system.—Our work was conducted in the

Hubbard Brook (HB) watershed of central New Hampshire

because of the wealth of information available for headwater

stream communities. Hubbard Brook streams have served as

a model system in ecology over the last 50 years (Holmes and

Likens, 2016). Typical streams have low conductivity (12.0–

15.0 lS), slight acidity (pH of 5.0–6.0), high dissolved oxygen

content (80–90% saturation) and moderate mid-day summer

temperatures (13.0–17.08C; Likens and Buso, 2006). In

addition to abiotic stream variables above, we have .10

years of population ecology (mark-recapture and genetics)

data on Spring Salamanders at HB. Based on this previous

research, dispersal by Spring Salamanders is strongly biased

upstream and occurs mainly along stream corridors (Lowe,
2003). Individuals of higher body condition are more likely
to disperse upstream and contribute to population stability at
upstream sites (Lowe et al., 2006b). Individuals dispersing the
farthest also have relatively long forelimbs and short
hindlimbs in comparison to non-dispersing individuals
(Lowe and McPeek, 2012) and experience an increase in
survival probability with dispersal distance (Lowe, 2010).
Gene flow among reaches varies by stream slope with genetic
distance increasing with slope between downstream and
upstream sampling sites separated by 1 km (Lowe et al.,
2006b, 2008, 2012). Therefore, the potential for microgeo-
graphic variation in this system has already been document-
ed with morphological and genetic divergence between
salamander populations in upstream and downstream reach-
es, setting the stage for our experiment.

Experimental design.—Our common garden experiment was
conducted in experimental mesocosms within the HB
watershed. Mesocosms were constructed from 189 L poly-
ethylene tubs (108 cm x 62 cm x 46 cm) that were modified
to allow water to flow (see Davenport and Lowe, 2016 for
details). Briefly, mesocosms were situated on the bank beside
Norris Brook in eight spatial blocks, with three mesocosms
per block (24 total experimental units). All water was gravity
fed from Norris Brook with flow being modified by ball valves
emitted from vinyl tubing and was maintained at approxi-
mately 5 L/min. Substrate composition of each mesocosm
was standardized with untreated playground sand topped
with a single layer of gravel. Each mesocosm was then
randomly assigned four cobble-sized rocks (150–340 mm in
diameter) collected from the main stem of Hubbard Brook.
No filters were placed in vinyl tubing to permit colonization
of prey (stream invertebrates and larval salamanders of the
genus Eurycea) from Norris Brook, and lids on top of
mesocosms were opened for two weeks prior to experimental
start date to allow input from falling terrestrial litter and
invertebrates. Two downstream drain holes were drilled into
each mesocosm to promote flow through of stream water
with each drain also being covered with mesh to prevent
escape. Mesocosms were constructed on 19 June 2013, and
water flow from Norris Brook to the mesocosms began on 6
July 2013. After the experiment began, we secured lids on all
mesocosms to prevent escape of experimental organisms.

To measure competitive performance, we deployed four
different environments randomly assigned throughout the
eight spatial blocks. The four treatments were: 1) one larval
Spring Salamander from a fish reach vs. one larval Spring
Salamander from a fish reach, 2) one larval Spring Salamander
from a fishless reach vs. one larval Spring Salamander from a
fishless reach, 3) one larval Spring Salamander from a fish
reach vs. one Brook Trout fingerling, and 4) one larval Spring
Salamander from a fishless reach vs. one Brook Trout
fingerling. Each of the four treatments was replicated six times
within the mesocosm array. With this substitutive design, we
could evaluate how the strength of intra- and interspecific
competition varied as a function of an individual’s origin
within a stream (fish or fishless reach) and whether salaman-
ders were competing with a conspecific or heterospecific.

The density of individuals for the experiment was kept
constant at the minimum number of individuals needed to
test for competition: two individuals/m of mesocosm length.
Natural salamander densities at Hubbard Brook can vary
from 0.16 individuals/m to 0.46 individuals/m of stream
length (Davenport and Lowe, unpubl. data). Both authors

Fig. 1. (A) Stream origin sites of collected Gyrinophilus porphyriticus
(white stars) in experiments based on distance from 2nd order Hubbard
Brook and presence of Brook Trout. The gray bar illustrates a barrier for
fish (e.g., waterfall or manmade culvert) at approximately 500 m from
confluence with 2nd order stream that prevents fish from dispersing
upstream in collection streams. (B) Picture of experimental mesocosm
array on banks of Norris Brook.
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have observed higher localized salamander densities at
Hubbard Brook during periods of concentrated resources
(e.g., low water flow conditions of the summer).

Field methods.—We collected larval salamanders from fish
and fishless reaches (i.e., above and below known Brook
Trout barriers) of two study streams (Kineo Brook and Falls
Brook) within the HB watershed. Initial data indicated that
trout populations only extended 100 m upstream from the
confluence with the main stem of the Hubbard Brook (Lowe
et al., 2006b), but subsequent surveys showed that trout
persist up to 600 m from the confluence in both of these
streams (Davenport, Addis, and Lowe, unpubl. data). It is also
important to note that all experimental animals came from
the same sampling sites used in these previous studies. In
addition to salamander dispersal and survey data, we also
know that aquatic conditions do not differ significantly
between the downstream and upstream sampling sites of
study streams (Likens and Buso, 2006).

Larval salamanders (snout–vent length [SVL]¼ 31–63 mm)
were collected from downstream fish reaches (0–400 m from
the Hubbard Brook confluence) and upstream fishless
reaches (750–1000 m from the Hubbard Brook confluence)
on 6–14 July 2013. Salamanders were weighed, measured,
photographed, and marked before being randomly assigned
to a mesocosm. Mass was used as response variable because it
can be an important predictor of male reproductive success
(Houck, 1988) and the outcome of interference competition
(Mathis, 1991). All salamanders were uniquely marked by a
dorsal subcutaneous injection of a fluorescent elastomer
(Northwest Marine Technologies, Shaw Island, WA). To
prevent bias, all salamanders were matched for size and then
randomly assigned to mesocosms across the entire experi-
ment. The sex of salamanders was not able to be determined
for this study. All Brook Trout fingerlings (fork length 87–112
mm) were collected from pools in the main stem of Hubbard
Brook with minnow traps on 6–14 July 2013. This prevented
any salamanders from having prior exposure to specific trout
individuals. The experiment began on 14 July 2013 and ran
for 39 days. Upon termination, all large cover objects and
substrate were searched in mesocosms until all experimental
animals were recovered. All experimental salamanders were
weighed, measured, and photographed before release back to
their collection site. We also used ImageJ (Schneider et al.,
2012) to verify salamander length measurements on all
photographs.

Data analysis.—To determine if there were significant
differences in larval salamander survival and change in
growth, we analyzed data with a mixed linear effects model.
We crossed salamander origin (fish or fishless reach) with
competitor identity (presence of a conspecific Spring Sala-
mander or heterospecific Brook Trout) as fixed factors and
had mesocosm as a random factor to evaluate our hypoth-
eses. We analyzed proportional change in mass, SVL, and
body condition (final–initial/initial). Body condition was
calculated by using the scaled mass index (Peig and Green,
2009, 2010). All statistical analyses were considered statisti-
cally significant when P , 0.05. All statistical analyses were
conducted with SAS 9.0 software.

RESULTS

Spring Salamander survival was 96% in heterospecific
treatments and 100% in conspecific treatments. Only one

individual from an upstream origin with a heterospecific
treatment died during the experiment. That individual was
excluded from all growth analyses. Proportional change in
mass was not affected by salamander origin (F1,19¼ 0.08, P¼
0.777), competitor identity (F1,19 ¼ 0.01, P ¼ 0.914), or their
interaction (F1,19 ¼ 0.72, P ¼ 0.405). Similarly, proportional
change in SVL was not affected by salamander origin (F1,19¼
1.02, P¼ 0.326), competitor identity (F1,19¼ 0.01, P¼ 0.935),
or their interaction (F1,19 ¼ 1.41, P ¼ 0.250). The body
condition of all salamanders changed during the experiment
(Fig. 2). However, there was no significant effect on Spring
Salamander body condition of salamander origin (F1,19 ¼
1.81, P¼ 0.196), competitor identity (F1,19¼ 0.01, P¼ 0.997),
or their interaction (F1,19¼ 0.01, P¼ 0.951, Fig. 2). Although
no statistical comparisons were made, all Brook Trout with
larval salamanders gained mass during the experiment with a
mean (61 SE) change in mass of 1.22 g (60.17 g).

DISCUSSION

Microgeographic variation does not appear to be important
in determining the strength of interspecific competition
between larval Spring Salamanders and fingerling Brook
Trout. Brook Trout had a generally negative effect on Spring
Salamander performance, regardless of reach origin, although
these negative effects did not translate into changes in
survival (Fig. 2). Our results are similar to previous research
that also revealed a non-significant effect of fingerling Brook
Trout on larval Spring Salamander survival but generally
negative effects on salamander growth (Resetarits, 1995).
This suggests that the negative effects of young Brook Trout
are concentrated on growth of larval salamanders and may
indirectly affect future metamorphosis timing. For example,
longer larval periods and delays in maturation documented
for larger plethodontids could be further extended (Bruce,
2003) similar to those observed in pond-breeding salaman-
ders (Semlitsch et al., 1988; Scott, 1994; Searcy et al., 2014).
Spring Salamanders metamorphose within 3–5 years (Bruce,
1980), and any delays in metamorphosis could carry over to
affect future reproductive events (i.e., experiencing reduced
odds of survival to 1st reproduction and fewer eggs per
female). Alternatively, earlier ontogenetic niche shifts may

Fig. 2. Performance (measured as mean proportional change in body
condition in grams) of Gyrinophilus porphyriticus based on reach origin
and presence/absence of Brook Trout. Means are pooled across six
replicates, and error bars indicate 61SE.
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alleviate competition with Brook Trout, as salamanders can
metamorphose to forage at the aquatic-terrestrial interface
(Lowe et al., 2005; Greene et al., 2008).

Differences in intraspecific competitive ability previously
found for Spring Salamanders do not appear to be linked to
differences in interspecific competitive performance (Daven-
port and Lowe, 2016). Traits related to overall competitive
ability should be positively associated to promote persistence
of a species (i.e., increased body size and enhanced ability to
acquire resources), and these associations could explain
competition strength across taxa (Goldberg, 1996; Bolnick
et al., 2011; Baron et al., 2015; Levine, 2016). However, the
mechanism for intra- versus interspecific competitive ability
for Spring Salamanders may be very different. For example,
any differences in morphology or behavior that convey a
competitive advantage over conspecifics may result in a
disadvantage with heterospecifics (i.e., heightened aggres-
sion and larger body size).

Based on our results, it appears that persistence of Spring
Salamanders with Brook Trout is not contingent on prior
exposure to Brook Trout. Brook Trout are aggressive compet-
itors and active, visual predators known to cause changes in
salamander foraging behavior (Fausch and White, 1981,
1986; Resetarits, 1991, 1995; Magoulick and Wilzbach,
1998). Therefore, although increased aggression has been
linked with increased competitive performance of stream
salamanders in experimental settings (Southerland, 1986a,
1986b), this aggression may be outmatched by Brook Trout
no matter where a Spring Salamanders is from. It has been
hypothesized that upstream populations of salamanders in
fishless reaches may serve as sources, subsidizing down-
stream populations that occur with fish through downstream
drift (Bruce, 1985, 1986). Under this hypothesis, downstream
drift is driven by high conspecific densities in upstream
reaches (Thiesmeier and Schuhmacher, 1990). In Virginia,
Spring Salamander populations upstream can be up to three
times greater than downstream populations, consistent with
this hypothesis (Resetarits, 1991). Our results indicate the
potential of downstream populations as sinks, and we are
currently evaluating this hypothesis with our capture-mark-
recapture data in upstream vs. downstream reaches across the
HB watershed. Nonetheless, our results in combination with
other published literature demonstrate that Brook Trout of
any size can severely affect Spring Salamanders as predators
and competitors throughout their range.

Microgeographic variation may exist in our study system
but may be specific to life stage and interaction. Unlike our
focus on interspecific competition, a previous work on local
adaptation in stream salamanders has focused on predator-
prey interactions (Storfer and Sih, 1998). Therefore, selection
at the local scale could still occur, but only in response to
larger Brook Trout—voracious predators of stream salaman-
der larvae (Barr and Babbitt, 2007). Indeed, trout diets across
the Hubbard Brook valley have included several species of
larval salamanders, including G. porphyriticus (Mondelli et al.,
2014). Preliminary data from another experiment suggests
that there may be a stream-origin effect on anti-predator
behavior of adult Spring Salamanders (Hernandez et al.,
unpubl. data). Resetarits (1995) found that overall activity of
larvae of G. porphyriticus did not vary by Brook Trout
presence, but the distribution of activity within a mesocosm
was affected, with larval salamanders avoiding areas with
Brook Trout. Future experimental work should elucidate
whether anti-predator behavior is a response to local selective
forces or a general response to larval predators.

Dispersal between downstream and upstream reaches
within streams is possible in our system, as previous research
has demonstrated long distance dispersal in Spring Salaman-
ders (.500 m). Furthermore, the upstream bias in dispersal
could be a response to negative interactions with Brook Trout
in lower reaches (Lowe et al., 2006b, 2008). As a conse-
quence, gene flow along streams may lead to a lack of
microgeographic variation in competitive response to Brook
Trout. Specifically, upstream gene flow may introduce
maladaptive phenotypes (i.e., fish-adapted) into upstream
populations and overwhelm local adaptation to fishless
conditions (Storfer and Sih, 1998). We do not yet know the
competitive performance of ‘‘disperser’’ phenotypes in this
system (Lowe and McPeek, 2012; Davenport and Lowe,
2016); however, other researchers have documented mor-
phological correlates of competitive performance in pletho-
dontid salamanders (Adams and Rohlf, 2000; Adams, 2010).
Our experimental animals were taken from two streams that
differ in gene flow (Lowe et al., 2006b, 2008): while both
downstream populations co-occur with fish, Kineo Brook has
higher gene flow to upstream populations than Falls Brook
(Lowe et al., 2008). Although our experimental design
addressed this difference in gene flow, we did not find an
effect of stream origin on the outcome of interspecific
interactions. Future work in this system could expand to
other streams that vary in gene flow to further evaluate this
hypothesis.
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