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a b s t r a c t

Understanding resource limitation is critical to effective management and conservation

of wild populations, however resource limitation is difficult to quantify partly because

resource limitation is a dynamic process. Specifically, a resource that is limiting at one

time may become non-limiting at another time, depending upon changes in its availabil-

ity and changes in the availability of other resources. Methods for understanding resource

limitation, therefore, must consider the dynamic effects of resources on demography. We

present approaches for interpreting results of demographic modeling beyond analyzing

model rankings, model weights, slope estimates, and model averaging. We demonstrate

how interpretation of y-intercepts, odds ratios, and rates of change can yield insights into

resource limitation as a dynamic process, assuming logistic regression is used to link esti-

mates of resources with estimates of demography. In addition, we show how x-intercepts

can be evaluated with respect to odds ratios to understand resource thresholds.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Recent focus in demographic modeling has shifted from
understanding not only how vital rates change through time,
but also why. Modeling tools like program MARK (White and
Burnham, 1999) and program POPAN-4 (Arnason et al., 1995)
are increasingly used by wildlife scientists to link estimates
of demographic parameters (e.g., survival, recruitment, and
population growth rate) with explanatory variables such as
climate (Franklin et al., 2000; Jones et al., 2002), forest frag-
mentation (Doherty and Grubb, 2002), poison (Grand et al.,
1998; Armstrong et al., 2001), and edge proximity (Moorman
et al., 2002). A similar approach could be used to improve our
understanding of resource limitation.

A resource is limiting if changes in its availability affect
the population equilibrium level (Williams et al., 2002), which
is a function of individual survival and reproduction. Esti-

∗ Corresponding author at: 559 Grandview Drive, Stevensville, MT 59870, United States. Tel.: +1 406 777 3406; fax: +1 406 243 6064.
E-mail address: meljor1@yahoo.com (M.J. Reynolds-Hogland).

mates of demography, therefore, can be linked with estimates
of resource availability, as they change through time, to yield
insights into resource limitation (Reynolds-Hogland et al., in
press). Subsequently, results can be interpreted by evaluating
model ranking, model weights, slope estimates of model vari-
ables, and model averaging. Model ranking, which is based
on model selection criterion (e.g., AIC; Akaike, 1973), is used
to determine which models are most likely to be selected
from a suite of models that represent a priori hypotheses.
Model weights provide strength of evidence for model selec-
tion and slope estimates of model variables reveal whether a
relationship between a model variable and the demographic
parameter is positive or negative. In addition, slope esti-
mates can be evaluated to determine relative effects of model
variables on a demographic parameter. Relative importance
of model variables can be determined by model averaging
(Burnham and Anderson, 2002).

0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2007.09.020
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The above analyses are useful for understanding which
resources most likely affect demographic parameters over
a study period, but they provide little insight into resource
limitation as a dynamic process. Resource limitation usually
occurs when a resource is in short supply (Ricklefs, 1993) and
a resource is likely to remain limiting through only a narrow
range of changes (Leopold, 1933). Therefore, a resource that
is limiting at one time may become non-limiting at another,
depending upon changes in its availability and changes in the
availability of other resources (Ricklefs, 1993).

Understanding the dynamic process of resource limitation
would be a powerful tool for wildlife management, particu-
larly in situations where only one or a few resources can be
managed due to logistical or financial constraints. For exam-
ple, several resources may affect survival rate positively for a
population, but the effects of each resource on survival may
change as availability of each resource changes. Management
strategies to increase survival, therefore, can be optimized
by shifting efforts from increasing one resource to increasing
another resource as resource availabilities change.

Equally important to effective management of wild pop-
ulations is knowing threshold levels of limiting resources. A
threshold is the level at which a stimulus is just strong enough
to be perceived or to produce a response (Agnes, 1999). We pro-
pose current methods for interpreting results of demographic
analyses (i.e., evaluating model ranking, model weights, slope
estimates, and model averaging) can be expanded to deter-
mine thresholds of limiting resources.

We present approaches for interpreting results of demo-
graphic modeling beyond analyzing model rankings, model
weights, slope estimates, and model averaging. In our first
example, we demonstrate how analyzing odds ratios, y-
intercepts, and rates of change can be used to understand
resource limitation as a dynamic process. In our second
example, we present methods for analyzing x-intercepts with
respect to odds ratios to estimate threshold levels of limiting
resources.

2. Example A: odds ratios, y-intercepts, and
rates of change

Consider a hypothetical population for which we estimated
survival probability. Assume we used capture-recapture data
collected over 10 years to model two demographic parameters
of adult females: annual survival probability and recap-
ture probability. Further assume we a priori identified four

resources, or state variables, that may be important to the
population and we were able to measure annual availability
of all four resources as they changed during the study period.
We considered each resource a possible covariate to survival
probability. Prior to analyses, we standardized all covariates by
subtracting the mean from each observation and then divid-
ing by the standard deviation so comparisons among resource
effects would be relative. For simplicity, we did not model
interaction effects among four resources. We linked estimates
of survival probability with annual estimates of resources via
logistic regression in program MARK (White and Burnham,
1999). Program MARK uses a maximum likelihood approach
to estimate demographic parameters and the effects of state
variables (e.g., resources) on demographic parameters (see
Cooch and White, 2002 for complete list of equations used in
program MARK). Although survival probability was the param-
eter of interest for our hypothetical example, estimates of
recapture probability were included to increase the precision
of survival probability estimates. We used AIC (Akaike, 1973)
to rank models and report results in Table 1, which includes
four models with resource covariates and one null model with
no covariates. Generally, model fit can be tested for logistic
regression models using the receiver operator characteristic
(ROC) statistic, which evaluates how well each model fits the
data (Hosmer and Lemeshow, 2000). In program MARK, boot-
strap goodness of fit is often used for model calibration and
validation.

Based on results of our analyses (Table 1), we conclude
Resources C and D had relatively little effect on survival
because both had relatively high �AIC values and low model
weights. In addition, we conclude Resources A and B did
affect survival, but their relative effects were indistinguishable
because both had low �AIC values and high model weights.
In fact, slope estimates for Resource A and Resource B were
identical. Current approaches for interpreting results of demo-
graphic modeling stop here. Further evaluation of our results
in terms of odds ratios, y-intercepts, and rates of change, how-
ever, will show the effect of Resource A on the probability of
survival was not identical to the effect of Resource B.

2.1. Odds ratios and y-intercepts

Evaluating odds ratios involves understanding the relation-
ship between an explanatory variable and the odds of two
mutually exclusive categories that are binomially distributed,
in this case successful versus unsuccessful outcomes. Analy-
sis of odds ratios is used in several fields, including actuarial

Table 1 – Ranking of models of survival, each with a different resource covariate, for a hypothetical population

Model �AIC AIC weight Model likelihood Slope Slope

SE LCL UCL

Resource B 0.00 0.45 1.00 5.63 2.21 2.82 14.09
Resource A 0.00 0.45 1.00 5.63 2.21 2.82 14.09
Resource D 4.70 0.05 0.10 0.50 0.44 −0.02 0.97
Null 5.34 0.03 0.07 NA NA NA NA
Resource C 5.39 0.03 0.07 0.40 0.57 −0.11 1.97

Only Resource B and Resource A ranked high and had relatively high model weights.
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science (Al-Ghamdi, 2002), economics (Craig and Sandow,
2004), engineering (Ramirez et al., 1994; Del Prete and Grigg,
1999), epidemiology (Slavin, 2002), medicine (Fujiwara et al.,
2003), and sociology (Lebel et al., 2002), but it has yet to be
applied to demographic modeling to understand the dynamic
effects of resource availability on demography.

Logistic regression fits the natural log of the odds of two
categories (the logit) using a linear function of the explanatory
variables, the forcing function. For example, if we look at the
number of times two mutually exclusive categories, such as
survival and death, occurred given an explanatory variable X,
the probability (�) of survival, given the covariate Xi, can be
modeled using logistic regression as follows:

ln

(
s/(s + d)
d/(s + d)

)
= ln

(
�s

�d

)
= ln

(
�s

1 − �s

)
= ˇ0 + ˇiXi (1)

�s = eˇ0+ˇiXi

1 + eˇ0+ˇiXi
(2)

where s is the number of individuals that survived, d the num-
ber of individuals that died, �s the probability of survival,
�d the probability of death, B0 the y-intercept, Bi the slope,
and Xi is the standardized value of resource i. The probabil-
ity of survival is sigmoidally related to X, however, the logit
(ln (�s/(1 − �s))) is linearly related to X(ˇ0 + ˇiX).

According to Eq. (1), if B0 = 0 and Xi = 0, the odds of surviving
are 50/50:

ln
�s

1 − �s
= 0, �s = e0(1 − �s), �s = 0.50 or 50%,

odds = �s

1 − �s
= 50%

50%

Because we standardized all covariates by subtracting the
mean and then dividing by the standard deviation, the value 0
for standardized Xi corresponds to the mean value of resource
i available throughout the study period. Therefore, if B0 = 0 and
Xi = 0, the probability of surviving is equal to the probability of
dying when resource i equals mean availability of resource i.
By changing the value of only the y-intercept, the probabil-
ity of survival also changes. For example, if B0 = 1 and Xi = 0,
the odds of surviving versus dying are 73/27, which is greater
than the odds of dying versus surviving (27/73) when resource
i equals mean availability of resource i. Alternatively, if B0 = −1
and Xi = 0, the odds of surviving versus dying are 27/73 and the
odds of dying versus surviving are 73/27.

To show the utility of evaluating y-intercepts, we graphed
y-intercepts from the top two models of survival from our
hypothetical example (Fig. 1). We used y-intercept values
(Table 2) and slope values (Table 1) to plot the linear relation-
ships between Resource A and the logit (i.e., ln {�s/1 − �s}) and

Table 2 – Estimates of y-intercepts for the top two
models of survival for a hypothetical population

Model y-Intercept SE LCL UCL

Resource B −1.50 0.73 −3.88 −0.36
Resource A 1.50 0.73 0.36 3.88

Fig. 1 – Linear relationships between the logit (i.e., ln odds
of survival vs. dying) and standardized availability of
Resource A and the logit and standardized availability of
Resource B and comparison of y-intercepts. y-Intercept for
Resource A = 1.5, which corresponds to odds of
survival = 82/18 when Resource A is at its mean value.
y-Intercept for Resource B = −1.5, which corresponds to odd
of survival = 18/82 when Resource B is at its mean value.

Resource B and the logit (Fig. 1). Although both Resource A and
B affected survival positively and slope estimates were identi-
cal (Table 1), y-intercepts differed (Table 2), which influenced
the way each resource affected the probability of survival
(Fig. 1).

For example, when Resource A was at its mean level (i.e.,
standardized Xi = 0 in Fig. 1), the probability of surviving (0.82)
was much higher than was the probability of dying (0.18).
Alternatively, when Resource B was at its mean level, the
probability of surviving (0.18) was much lower than was the
probability of dying (0.82). The linear relationship between
Resource B and the logit was “shifted” far below the linear rela-
tionship between Resource A and the logit (Fig. 1). Therefore,
mean availability of Resource B had a smaller effect on the
odds of survival versus death compared to mean availability
of Resource A.

2.2. Rates of change

Resource limitation is a dynamic process that changes as
availability of resources change. At some level of Resource
A, Resource B might become more limiting and vice versa.
To examine these relationships, we graphed the probabil-
ity of survival against availability of standardized values
of Resources A and B (Fig. 2). Although the relationship
between the logit and resource availability was linear (Eq. (1),
Fig. 1), the relationship between probability of survival and
resource availability was sigmoidal (Fig. 2). Therefore, we can
evaluate rates of change in the probability of survival in rela-
tion to increases in standardized values of Resource A and
Resource B.

When mean availability of each resource was present,
probability of survival was 0.82 and 0.18 for Resource A and
Resource B, respectively (points A1 and B1; Fig. 2). By increas-
ing both resources by 0.5 standardized units (points A2 and
B2), probability of survival increased from 0.82 to 0.99 (17%
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Fig. 2 – Sigmoidal relationships between probability of
survival and Resource A (standardized) and probability of
survival and Resource B (standardized). A1, A2, and A3

correspond to survival probabilities when mean Resource A
was available, when mean Resource A was increased by 0.5
standardized units, and when mean Resource A was
decreased by 0.5 standardized units, respectively. Similarly,
B1, B2, and B3 correspond to survival probabilities when
mean Resource B was available, when mean Resource B
was increased by 0.5 standardized units, and when mean
Resource B was decreased by 0.5 standardized units,
respectively. The inflection point on the sigmoidal curve
occurs when probability of survival = 0.50.

increase) for Resource A and from 0.18 to 0.79 (61% increase)
for Resource B. Equal increases in standardized amounts of
Resources A and B led to unequal increases in probability of
survival; an increase in mean Resource B had a relatively large
effect on survival. This occurred because the rate of change in
survival, as Resource A increased above its mean, was lower
than the rate of change in survival, as resource B increased
above its mean.

The same relationships can be evaluated to understand
how a decrease in each resource affects probability of survival.
By decreasing mean availability of Resource A and Resource
B (points A1 and B1; Fig. 2) by 0.5 standardized units (points
A3 and B3; Fig. 2), the probability of survival fell from 0.83
to 0.21 (61% decrease) for Resource A and from 0.18 to 0.01
(17% decrease) for Resource B. Equal decreases in standard-
ized amounts of Resources A and B yielded unequal decreases
in probability of survival. Therefore, the effects of Resources
A and B on probability of survival were not equal even though
their linear logit slope estimates, from Table 1, were identical.

When modeling the logit of survival versus death, slope
estimates from Eq. (1) (which are represented in Table 1 and
Fig. 1) represent the relative effect of explanatory variables on
the logit. The larger the slope estimate, the larger the effect of
an explanatory variable. If resources are modeled as explana-
tory variables of the logit, the resource with the largest slope
will have the largest effect on probability of survival (assum-
ing the model with this resource ranked high and had high
model weight). Such a resource, if its slope is positive, should
be relatively limiting to the probability of survival. The same
rationale can be used to examine slope estimates in Fig. 2. The
difference is that slope estimates in Eq. (1) are static, whereas

slope estimates in Fig. 2 change as availability of resources
change. Depending upon resource availability, Resource A may
be more limiting than Resource B and vice versa.

2.3. Y-intercept values

The relationships in Figs. 1 and 2 can be evaluated to
understand what y-intercept values from Eq. (1) mean. The
y-intercept from Eq. (1) for each resource i (standardized Xi = 0
in Fig. 1) corresponds to the position of mean availability
of resource i on the sigmoidal curve (Fig. 2). The inflection
point on the sigmoidal curve occurs when the probability
of survival = 0.50. If mean availability of resource i is posi-
tioned above the inflection point on the sigmoidal curve
(which occurs when y-intercept >0; e.g., point A1 Fig. 2), an
increase in mean availability of resource i results in a convex
increase in probability of survival (Resource A; Fig. 2). Alterna-
tively, if mean availability of resource i is positioned below the
inflection point on the sigmoidal curve (which occurs when
y-intercept <0; e.g., point B1 Fig. 2), an increase in mean avail-
ability of resource i results in a relatively concave increase in
probability of survival (Resource B; Fig. 2). At both extreme
ends of the sigmoidal curve (e.g., when y-intercept values are
either �0 or �0) rates of change in survival probability are
very small.

2.4. Management implications

Aldo Leopold described a limiting factor as “the one which
has to be moved first, usually the one to which the applica-
tion of a given amount of effort will pay the greatest returns,
under conditions as they stand” (1933). If only current meth-
ods were used to analyze our hypothetical example (i.e., model
ranking, model weights, and evaluation of slope estimates
from Eq. (3)), results would show Resource A and Resource B
had equal effects on survival (Table 1), suggesting managers
should maintain or increase both Resources A and B to main-
tain or increase population survival. Evaluating odds ratios,
y-intercepts (Fig. 1) and rates of change in survival probabil-
ity (Fig. 2) provides a more comprehensive understanding of
resource limitation as conditions change, which is useful for
optimizing management strategies.

For example, when Resource A and Resource B were both
available in their mean amounts, the effect of Resource A
on odds of survival was larger than the effect of Resource B
(Fig. 1). Moreover, a decrease in mean availability of Resource
A resulted in an exponential decrease in survival probability
whereas a similar decrease in mean availability of Resource
B did not (Fig. 2). Therefore, if the management goal is to
maintain population survival probability, managers should
focus efforts on maintaining mean levels of Resource A before
investing efforts to maintain mean levels of Resource B.
Alternatively, if mean levels of both Resource A and B are
already available on a landscape, an increase in Resource
B will result in an exponential increase in the probability
of survival, whereas a similar increase in Resource A will
not (Fig. 2). In this situation, managers should focus efforts
on increasing Resource B before investing efforts to increase
Resource A.
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Fig. 3 – Sigmoidal relationships between probability of
survival and real values of Resource A and probability of
survival and real values of Resource B.

2.5. Real values of resource availability

It may be useful to back transform the resource data and graph
its relationship with probability of survival (Fig. 3), which pro-
vides a more tangible tool for management. Moreover, back
transformation can yield non-intuitive insights into resource
limitation. For a resource to limit survival, positive changes
in its availability must affect survival positively (Williams
et al., 2002), which usually happens when a resource is in
short supply (Ricklefs, 1993). In Fig. 3, mean availability of
Resource B (57 units) was large relative to mean availability of
Resource A (42 units), but a 0.5 unit increase in mean Resource
B had a larger effect on survival compared to the effect of
a similar increase in mean Resource A (Fig. 2). Therefore, at
some levels of resource availability, a resource may be limit-
ing (i.e., in short supply) even when its availability is relatively
large.

3. Example B: resource thresholds

Knowing the level at which a resource must be maintained to
sustain population growth rate would be useful information
to wildlife managers. To calculate population growth rate (�),
managers and researchers often estimate the number of indi-
viduals present at two mutually exclusive time periods, t1 and
t2, and divide the number of individuals occurring at t2 by the
number of individuals at t1. Values >1 reflect a population that
is growing between these two time periods, where as values <1
reflect a population that is declining. Similar to our example
regarding survival probability, logistic regression can be used
to link estimates of � with estimates of resource availabilities
as follows:

� = Nt2

Nt1
= odds,

ln (�) = ln
(

Nt2

Nt1

)
= ln

(
Nt2/(Nt2 + Nt1)
Nt1/(Nt2 + Nt1)

)

= ln

(
�Nt2

�Nt1

)
= ln

(
�Nt2

1 − �Nt2

)
= ˇ0 + ˇiXi (3)

Fig. 4 – Linear relationship between Resource R and ln �

and its 95% confidence interval for a hypothetical scenario.
The threshold point of Resource R occurs where the
function crosses the x-axis (dark rectangle). Gray rectangles
represent the 95% CI, or the range of variation associated
with the threshold point.

�Nt2 = eˇ0+ˇiXi

1 + eˇ0+ˇiXi
(4)

where Nt2 is the number of individuals occurring in time
period 2, Nt1 the number of individuals occurring in time
period 1, �Nt2 the probability that an individual was present
in time period 2, �Nt1 the probability that an individual was
present in time period 1, B0 the y-intercept, Bi the slope, and
Xi is the standardized value of resource i.

We explored the relationship between � and resource avail-
abilities using a 22-year dataset for a hypothetical female
population. Assume we a priori identified resources that may
be important to the population and we were able to measure
annual availability of resources as they changed during the
study period. We considered each resource a possible covariate
to annual � and we linked estimates of ln (�) with annual mea-
sures of resource availabilities via logistic regression. Based
on model ranking, slope estimates, and model averaging, we
found only one resource (Resource R) explained �.

To evaluate biological threshold levels of Resource R with
respect to �, we graphed the linear relationship between ln �

and standardized availability of Resource R (Fig. 4) based on
data from Table 3. One biological resource threshold should be
the level at which the odds of the population growing is equal
to the odds of the population dying. Based on Eq. (3), the odds
of population growth are 50/50 when y = 0. When y > 0, the odds
of population growth are greater than the odds of population
decline and when y < 0, the reverse is true. The point where
Eq. (3) crosses the x-axis (dark rectangle), therefore, should
represent a threshold value for Resource R. Variation in the
threshold estimate can be included by plotting the confidence
interval (Table 3; columns 8 and 9) around the function and
determining where confidence intervals cross the x-axis. In
Fig. 4, the threshold point for standardized Resource R = −0.03
(dark rectangles) and the corresponding 95% CI was −2.3 and
0.25 (gray rectangles). If the goal is to manage the popula-
tion such that the odds of population growth is equal to the
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Table 3 – Annual availability of resource R and corresponding estimates of � for a hypothetical population during
1981–2002

Year R availability (ha) Standardized R Estimated � � LCL � UCL ln (�) ln (LCL �) ln (UCL �)

1981 503.10 −0.45 0.98 0.90 1.07 −0.02 −0.11 0.07
1982 530.46 −0.23 1.01 0.95 1.08 0.01 −0.05 0.08
1983 635.76 0.60 1.15 1.06 1.24 0.14 0.06 0.21
1984 690.93 1.04 1.22 1.08 1.38 0.20 0.08 0.32
1985 524.79 −0.28 1.01 0.94 1.08 0.01 −0.06 0.08
1986 442.26 −0.93 0.91 0.79 1.05 −0.09 −0.23 0.05
1987 486.00 −0.58 0.96 0.87 1.07 −0.04 −0.14 0.06
1988 393.30 −1.32 0.86 0.72 1.04 −0.15 −0.33 0.04
1989 427.77 −1.05 0.90 0.77 1.05 −0.11 −0.26 0.05
1990 464.13 −0.76 0.94 0.83 1.06 −0.07 −0.19 0.06
1991 575.01 0.12 1.07 1.02 1.12 0.07 0.02 0.11
1992 711.45 1.20 1.25 1.09 1.44 0.23 0.09 0.37
1993 734.76 1.38 1.29 1.10 1.52 0.25 0.09 0.42
1994 758.70 1.57 1.33 1.10 1.59 0.28 0.10 0.47
1995 676.53 0.92 1.20 1.08 1.34 0.18 0.08 0.29
1996 622.89 0.50 1.13 1.06 1.21 0.12 0.06 0.19
1997 628.20 0.54 1.14 1.06 1.22 0.13 0.06 0.20
1998 641.97 0.65 1.16 1.07 1.25 0.14 0.07 0.22
1999 590.31 0.24 1.09 1.04 1.14 0.08 0.03 0.13
2000 447.12 −0.89 0.92 0.80 1.05 −0.08 −0.22 0.05
2001 273.51 −2.27 0.75 0.55 1.01 −0.29 −0.59 0.01

odds of population decline, then managers could focus efforts
on maintaining Resource R at levels between −2.3 and 0.25
standardized units.

Real values of Resource R that represent the range of stan-
dardized Xi values can be determined by back transformation.
In our example, we standardized all covariates prior to demo-
graphic analyses by subtracting the mean and then dividing
by the standard deviation:

Xi = Xreal − Xmean

XS.D.

Therefore, the real value of Resource R at the threshold level
equals:

Xreal = −.03 × 126.46 + 559.59, Xreal = 555.80 ha

The corresponding 95% CI equals:

X95% CI = −2.3 × XSD + Xmean, Xreal = 0.25 × XS.D. + Xmean,

X95% CI = −2.3 × 126.46 + 559.59, Xreal=0.25 × 126.46+559.59,

X95% CI = 268.73, 591.21 ha

4. Discussion

Understanding resource limitation is critical to effective man-
agement and conservation of wild populations (Leopold, 1933).
One way to model resource limitation is to augment resource
availability for an animal population and estimate demo-
graphic response (Hubbs and Boonstra, 1997; Hoodless et al.,
1999; Hart et al., 2006); however, resource augmentation is not
always logistically feasible and experimentation, as well as
resulting inferences, have limited spatial and temporal scope
(Stephens et al., 2003). The method we propose to under-
stand resource limitation differs from augmentation models

in that variation in resource availability occurring during a
study period is explicitly modeled and considered a state vari-
able.

Demographic numerical response models, which link
rates of change in consumer abundance to food availability
(Caughley, 1976; May, 1981) are also commonly used to eval-
uate resource limitation (Pennycuick, 1969; Skogland, 1985;
Messier, 1991; Langvatn et al., 1996; Ghosh and Sarkar, 1998;
Mduma et al., 1999). Most numerical models, however, do not
consider multiple resources as does our method and, there-
fore, they are relatively unrepresentative of natural systems
(Roelke, 2000). Importantly, a resource that is limiting at one
time may become non-limiting at another time, depending
upon changes in its availability and changes in the availabil-
ity of other resources. Even if numerical models were used to
consider multiple resources, current interpretation of results
would yield little about resource limitation as a dynamic pro-
cess in terms of changing availabilities of resources, such as
that demonstrated in Figs. 2 and 3. We found one study that
used multiple limiting resources and a demographic numeri-
cal response model, but the model was not intended to be used
as a predictive tool for management primarily because simula-
tion results represented hypotheses to be tested (Roelke, 2000).
Alternatively, results from our method are not based on sim-
ulation analyses; they are based on empirical data collected
during a study. By evaluating results in terms of y-intercepts
and rates of change, our method may be a powerful tool for
managers interested in understanding resource limitation as a
dynamic process in real-life scenarios. In addition, our method
can be used to evaluate multiple competing hypotheses that
stem from simulation studies.

Individual-based models are also used to understand
resource limitation (Griebeler and Seitz, 2002; Rashleigh and
Grossman, 2005). For example, Wang and Grimm (2007) eval-
uated resource limitation for a population of the common



Author's personal copy

430 e c o l o g i c a l m o d e l l i n g 2 1 1 ( 2 0 0 8 ) 424–432

shrew (Sorex araneus) using individual-based models via sub-
models of shrew behavior. Although the global model and
simulation analyses were very complete, the simulations were
based on assumptions regarding the effects of resources on
shrew response. Specifically, the relationships between food
resources or habitats and shrew responses were specified
a priori as sub-models. Our method for evaluating resource
limitation differs substantially from individual-based models
because our method makes no a priori assumptions regarding
the relationships between resources and vital rates. Indeed,
the main purpose of our method is to incorporate empiri-
cal data collected during a study to determine the effects of
resources on vital rates.

Another method for understanding resource limitation is
to use population-level models. Stage-based vital rates for
populations are often estimated based on life table experi-
ments, these rates are used to populate matrix models, � is
projected over time, and an algorithm is used to link estimates
of � with estimates of predictor variables (e.g., resources).
For example, Meng et al. (2006) evaluated the effects of a
chemical on a population of killifish (Oryzias latipes). They eval-
uated the effects of the chemical on individual survival and
fecundity in the lab, used these results to populate matrix
models, and then projected � over time under different chem-
ical levels. Our method for understanding resource limitation
differs from traditional population-level models because our
method evaluates realized � and results regarding the rela-
tionship between � and resources are not based on simulation
analyses.

Models that use capture-recapture data to estimate vital
rates and which link predictor variables to vital rates (e.g.,

Grand et al., 1998; Franklin et al., 2000; Armstrong et al.,
2001; Doherty and Grubb, 2002; Jones et al., 2002) can yield
information regarding which variables affect demography, but
current methods for interpreting results from such models
fall short in terms of yielding insights into resource limitation
as a dynamic process. Conceptually, our method incorporates
capture–recapture data to estimate demographic parameters,
after which annual estimates of resource availabilities are
incorporated as covariates to parameter estimates (Fig. 5).
Using an information theory approach for model selection
within a hypothesis testing framework (e.g., AIC), models are
ranked in terms of their ability to explain the data. Model
weights and slope estimates for variables are examined to
determine the magnitude and direction of resource effect.
Importantly, current approaches for interpreting results of
demographic modeling stop here (i.e., the dashed line in Fig. 5).
Further evaluation of results from model selection in terms of
odds ratios, y-intercepts, x-intercepts, and rates of change can
yield information regarding resource limitation and resource
thresholds.

The dynamics represented in Figs. 2 and 3 are similar to
elasticity and sensitivity analyses (Demetrius, 1969; Caswell,
1978), respectively. Unlike traditional elasticity and sensitiv-
ity analyses, which provide single values corresponding to
relative or absolute changes in aij, multiple rates of change
in demographic estimates can be evaluated over a range of
resource availability values (Figs. 2 and 3). This may be impor-
tant given the effect of a 0.5 standardized unit increase of
Resource A on survival in Fig. 2 differs depending on whether
the Resource A increases from A3 to A1 or whether it increases
from A1 to A2.

Fig. 5 – Conceptual diagram of proposed method for evaluating results from demographic modeling. Capture–recapture data
are used to estimate demographic parameters, estimates of annual availabilities of resources are incorporated as covariates
to parameters, and information theory model selection is used to rank models in terms of their ability to explain the data.
Current approaches for evaluating demographic models stop at the dotted line. We propose that top-ranked models can be
evaluated in terms of odds ratios, y-intercepts, and rates of change to understand resource limitation as a dynamic process.
In addition, odds ratios and x-intercepts can be evaluated to understand resource thresholds.
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5. Summary

Our approach builds on current methods for analyzing results
of demographic modeling when logistic regression is used
to link demographic parameters with estimates of resource
availability. Within a hypothesis testing framework, critical
first steps toward understanding resource limitation include
evaluating model rankings, model weights, and slope esti-
mates. Comprehensive understanding of resource limitation,
however, requires knowing not only which resources affect
demography but also how a resource affects demography as
its availability changes or when availability of other resources
changes. We propose that researchers can exploit informa-
tion regarding odds ratios and intercepts, which are part of
results stemming from using logistic regression, to under-
stand resource limitation as a dynamic process and to yield
insight into resource thresholds.
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