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Carnivore habitat ecology: integrating

theory and application

Michael S. Mitchell and Mark Hebblewhite

Few terms in wildlife ecology and conservation biology enjoy jargon status more
than the word “habitat.” The ubiquity of the word in popular, scientific, and
administrative literature suggests a universal definition, yet the diversity of contexts
in which it is used clearly indicates little consensus. This conceptual imprecision
has strong, but generally unacknowledged, implications for understanding and
managing populations of wild animals, particularly for those where human-caused
changes to ecosystems threaten viability. Few vertebrate groups better epitomize
such populations than carnivores. Yet efforts to quantify what makes places
habitable for carnivores are strongly compromised when poorly considered or
biologically meaningless definitions of habitat are used.

We agree with Morrison et al. (1992), Hall et al. (1997), and Sinclair et al.
(2005) that a definition of habitat must explicitly consider the resources that
contribute to an animal’s fitness. Describing habitat simply as the places or
prevailing conditions where an animal is found is tautological, precluding robust
knowledge and effective conservation. Nonetheless, descriptive definitions are
overwhelmingly prevalent in the habitat literature. Why? We hypothesize three
possible explanations. First, so little is known about an animal’s habitat that only
the initial steps of the scientific method are available to investigators: observe and
hypothesize, the essence of description. Such cases are surely much rarer than the
prevalence of descriptive habitat definitions suggests. The second explanation is
that scant critical thought has been given to defining habitat because of the
challenges of employing the entire scientific method (i.e. testing of hypotheses).
In the absence of careful thought, over time such traditions become paradigms by
weight of representation, irrespective of their limited scientific or biological merits.
A final explanation is that data sufficient for developing rigorous, resource-based
definitions of habitat are unavailable. This real-world constraint does sometimes
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limit the application of even the best of habitat definitions, requiring the careful
use of surrogates (e.g. using proportion of hardwoods in the over story as a
surrogate for the specific hardwoods that produce hard mast); indeed, every habitat
definition we know relies on surrogates. Nonetheless, the uncritical use of surro-
gates, particularly given the rapid growth of remotely sensed land-cover data,
computing power, and the use of sophisticated analytical techniques, has produced
a large number of studies whose definition of habitat would seem to be “throw a
bunch of conveniently available environmental variables into the statistical hopper
and see what pops out.”

The prevalence of descriptive habitat definitions not linked to fitness suggests
both biological and scientific shortcomings in how we understand and study
habitat. Describing where animals live is not informative science; for robust
understanding that can lead to effective management and conservation, we need
to know why animals live where they do (Gavin 1991). For many species, including
a large and growing number of threatened carnivores, the consequences of poor
understanding or misguided conservation are real and strongly negative. Knowing
why an animal lives where it does is not just an academic exercise; we must bring
the best science possible to bear on problems that may ultimately prove insoluble if
we do not.

This chapter outlines our understanding of how to bring the best possible
science to bear on discerning why carnivores live where they do. We discuss the
concept of habitat, particularly as it applies to carnivores, whose resources con-
tributing to fitness are often mobile. And we will discuss how habitat for carnivores
can be quantified and its use interpreted. Finally, we discuss a study design that
uses sound logic and robust analysis to maximize strength of inference. We then
review some of the recent advances linking carnivore habitat to populations. We
suggest a way of thinking about, and studying, carnivore habitat that will improve
the efficiency of learning and the efficacy of conservation.

10.1 What is habitat?

The habitat definitions of Hall et al. (1997), Morrison (2001), and Sinclair et al.
(2005) are based on the classic notion of the ecological niche, whereby animals
select the resources and conditions that increase fitness (hence resource selection is
distinct from habitat selection). Individuals, populations, and species have habitat
and, consequently, habitat cannot occur without the animal. As with habitat, many
definitions of the niche exist but Grinnell’s original concept includes all subsequent
definitions. The niche is a property of a species, includes abiotic and biotic
components, is related to fitness, and includes long temporal and large spatial
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scales. Niche-based modeling has spurred recent investigation into explicit linkages
between the niche concept and use of habitat by animals (Pulliam 2000; Soberon
2007; Hirzel and Le Lay 2008). Another important contribution of niche theory to
habitat ecology is the distinction between fundamental and realized niches (Hutch-
inson 1957). An important consequence is that, unless we use experiments
(MacArthur 1967), as empiricists we almost always describe the realized niche,
or habitat, of a species. Under niche theory, populations have habitat but in
Figure 10.1 we can see clearly that habitat is hierarchical from populations to
individual foraging decisions by an animal. The concept of the niche is a good
starting point for understanding habitat in a way that can be applied across scales.

10.1.1 Potential, sink, quality, source, suitable, or critical?

What kind of habitat is it?

Following from the niche-based definition of habitat, habitat cannot just be a
geographical description of an area or piece of land. Certain conditions must be
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Fig. 10.1 Habitat occurs at multiple temporal and spatial scales; at the 1st order,
habitat selection scale of the persistence of the species, equivalent to the species’
niche; the 2nd-order, growth of local populations and seasonal and annual ranges of
individuals; 3rd order (short-term use of sites by individuals and social groups) and
finally; at the 4th order scale, where individuals make microscale foraging or selection
decisions. Source: Mayor et al. (2009)

OUP CORRECTED PROOF – FINAL, 6/12/2011, SPi

220 | Carnivore Ecology and Conservation



present for a species to survive and to reproduce. Hirzel and Le Lay (2008)
illustrated the relationship between habitat and its distribution in geographic
space (Figure 10.2). This approach to habitat helps us define several confusing
terms, such as source habitat, sink habitat, potential habitat, habitat quality,
suitable habitat, and critical habitat (Garshelis 2000; Pulliam 2000; Hirzel et al.
2002, Soberon 2007). First, presence of animals in an environment does not define
habitat because presence alone does not consider survival and reproduction. Thus,
environments where animals can occur, but where potential for survival is low and
reproduction absent, are sink habitats, and environments with sufficient resources
to support high survival and reproduction are source habitats (Figure 10.2). Note
that a sink habitat can be critical to a species if residents of a sink habitat emigrate
to a source habitat when a source population is low for reasons other than habitat.
Environments where members of a species could occur, but presently do not, are

Ecological dimension 1

(a) (b)

Longitude

La
ti

tu
de

r =0-5
r =0-4

r =0-3
r =0-2

r =0-1

E
co

lo
gi

ca
l d

im
en

si
on

 2

r =0

×
r =–0-1

r =–0-2

r =0

r =0

Fig. 10.2 Conceptual diagram of the relationship between habitat as defined by Sinclair
et al. (2005) and the geographic distribution of that habitat in space adapted from
Hirzel and LeLay (2008). (a) represents the relationship between intrinsic population
growth rate (r) and two ecological dimensions (such as lichen abundance, or snow pack).
Shaded areas indicate source habitat where population growth (r) is >0 (i.e. the
population is growing), and the area inside the solid dashed line is considered sink
habitat where species can persist, but only through immigration from an adjacent source.
The skull and crossbones represent areas where the species cannot persist. (b) Repre-
sents this environmental space translated to geographic space given spatial measure-
ments of the same resources for caribou in space. Shaded areas again represent source
habitat where the conditions present are favorable for species persistence. Note that r
here assumes density independence.
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potential habitats. Similar to the fundamental niche, measuring a potential habitat
well in field studies is almost impossible.

A habitat is of high quality (i.e. suitability) if individuals can experience high
survival and reproduction and, thus, the population has the potential for a high
growth rate. Note, however, that neither high nor low rates of survival and
reproduction are necessarily reliable indicators of habitat quality where vital rates
are density dependent; survival and reproduction could be high in poor habitat that
is sparsely populated and low in excellent habitat occupied by a population near
carrying capacity. Also, under the niche-based definition, the term “unsuitable
habitat” has no logical meaning: all habitat, by definition, is of various degrees of
suitability. “Non-habitat” is outside the solid dashed lines in Figure 10.2a, where a
species cannot persist. Under this definition, only habitat (where populations can
exist, with immigration for sink habitats) and non-habitat (where populations
cannot persist) can exist.

Finally, no stand-alone, biological definition of critical habitat exists because
“critical” implies importance for a specific goal or objective function. For
endangered species, the goal is most often making the species non-endangered
by reaching some recovery goal, but the target is a socially or politically defined
goal. Heuristically, however, we can imagine some smaller subset of the shaded area
in Figure 10.2 as being high-quality habitat that is sufficient for maintaining a
specific population size, given a geographic area and species’ life-history.

10.1.2 A fitness-based definition of habitat

The best understanding of habitat will explicitly relate resources to the survival and
reproduction of an animal. This is a conceptually satisfying understanding of habitat
because it proceeds from first principles, providing the mechanism that explains why
an animal does what it does. If we can understand the potential contribution of each
point in space to an animal’s fitness based on the resources found there, we can
evaluate the decisions an animal makes in its day-to-day activities (i.e. the behaviors
that we perceive as habitat use). Mitchell et al. (2002) presented such an approach,
originally developed by Zimmerman (1992) for black bears (Ursus americanus) in the
southern Appalachian mountains, presenting habitat as a “fitness landscape” (Box
10.1). The fitness landscape proved highly robust for predicting habitat selection of
black bears (Mitchell et al. 2002), effects of forest management on habitat use by
bears (Mitchell and Powell 2003a), and optimal selection of home ranges based on
the spatial distribution of resources (Mitchell and Powell 2007). Mosser et al. (2009)
linked a fitness surface to habitat variables for long-term studies of lions (Panthera
leo) in the Serengeti and showed a disconnect between habitats with high lion density
and habitats selected because they contributed the most to adult female survival and
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BOX 10.1 A habitat suitability model for black bears in the Southern

Appalachians

Black bears obtain most of their nutrition from seasonally available vegetation,
augmented by colonial insects, carrion, and rare acts of predation. In the southern
Appalachian Mountains of North Carolina during spring, black bears eat predomi-
nantly grasses, forbs, and a saprophytic parasite of red oaks (Quercus sp.), squaw
root (Conophilus americanus); berry-producing plants during summer; and hard-
mast producing trees during fall. Bears in the region eat anthropogenic foods but
suffer high rates of mortality near roads.

Zimmerman (1992; Mitchell et al. 2002) approached modeling habitat for black
bears in the region based on first principles, attempting to quantify those resources
and environmental attributes that contributed strongly to survival and reproduc-
tion. Zimmerman’s approach was based on the habitat suitability index paradigm
(Brooks 1997) but departed from it in some important respects. Drawing on
published literature, Zimmerman modeled a priori the values of 15 food, denning,
and escape resources important to bears (Table 10.1) and combined them into a

Table 10.1 Habitat components used to calculate a Habitat Suitability Index for

black bears living in the Southern Appalachians.

Habitat Component
Relationship to Fitness of
Bears Method of Sampling

Number of fallen logs/ha Abundance of colonial
insects

Field sampling

Anthropogenic food source Availability of food from
human point sources

Aerial/ground survey

Distance to anthropogenic food
source

Costs of traveling to
human food source

GIS

Distance between anthropogenic
food source and escape cover

Risk of acquiring food
from human sources

Topographic maps

Distance to perennial water Abundance of grasses
and forbs in spring

GIS

Percent cover of Smilax spp. Availability of fruit in fall Field sampling

Percent cover in berry species Availability of fruit in
summer

Field sampling

Presence of red oak species Availability of squaw root
in summer

Forest inventory data/
GIS

Forest cover type Availability of hard mast
in fall

Forest inventory data/
GIS

Age of stand Productivity of hard mast Forest inventory data/
GIS

(continued)
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Table 10.1 Continued

Habitat Component
Relationship to Fitness of
Bears Method of Sampling

Number of grape vines/ha Availability of fruit in fall Field sampling

Distance to nearest road Risk of encountering
humans

GIS

Area of conterminous forest not
bisected by roads

Risk of encountering
humans

GIS

Percent closure of understory Escape cover Field sampling

Slope of terrain Escape cover, availability
of caves for denning

GIS

Area in Rhododendron spp. or
Kalmia sp.

Availability of thickets for
denning

Aerial photo

Number of trees �90 cm DBH/ha Availability of large trees
for denning

Field sampling

0.00
0.06
0.12
0.18
0.23
0.29
0.35
0.41
0.47
0.53
0.59
0.65
0.70
0.76
0.82
0.88
0.94

Fig. 10.3 Zimmerman’s habitat suitability index (HSI) for black bears in the South-
ern Appalachians depicted as a fitness landscape for the Pisgah Bear Sanctuary in
western North Carolina. HSI values range from 0, poor quality, to 1, high quality.
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BOX 10.1 Continued

model that indexed habitat suitability on a scale from 0 (poor) to 1 (good; Figure
10.3). In a test of the model using independent data, the index predicted strongly
habitat selection by 81 telemetered bears, especially when escape resources were
removed (Figure 10.4), and helped to elucidate complex responses of bears to
habitat changes caused by forest management (Mitchell and Powell 2005). Used
as a currency for individual-based, optimal home-range models, the index facilitated
accurate prediction of the home ranges of 100 adult female bears (Figure 10.5;
Mitchell and Powell 2004, 2007). Winning no awards for parsimony, the index
nonetheless has yet to be improved; sensitivity analyses showed that no variable or
suite of variables dominate its predictions and no attempts to reduce the model have
resulted in improved predictiveness. The explicit linkages between resources and
their value to bears likely contributed strongly to the robustness of model predic-
tions across a variety of applications, making the map of model predictions a “fitness
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Fig. 10.4 Relationships between habitat use and Zimmerman’s HSI (a) and the HSI
without escape resources (b) for black bears in the Pisgah Bear Sanctuary, Pisgah
National Forest, North Carolina.
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cub production. This result emphasizes the long-understood, but seldom addressed,
flaw in equating density to quality (Van Horne 1983), i.e. where habitat quality is
high, a population has the potential to have high density but this potential may not
be realized for a number of reasons.

The notion of habitat as a fitness landscape, where the contribution to survival
and reproduction of resources at each point in space is made explicit, has concep-
tual appeal, but in practice can prove a daunting challenge. More often than not,
resources, such as specific food types, are difficult to observe or model over the large
landscapes that carnivores use, necessitating the use of surrogates. Thus, even in

BOX 10.1 Continued

landscape,” i.e. the potential contribution of each point in space to the survival and
reproduction of black bears (Powell 2004). The explanatory value of Zimmerman’s
model, beyond describing habitat selection by bears, highlights the merits of testing
hypotheses about fitness-based definitions of habitat.

Fig. 10.5 Estimated optimal home range (dots) superimposed over true home-
range (outline) of female bear 96 in 1984, Pisgah Bear Sanctuary, North Carolina.
Shades of gray depict Zimmerman’s HSI values (dark is low quality, light is high
quality) that served as the currency for home range optimization.
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Zimmerman’s (1992) model (Box 10.1), few resources were measured directly. For
example, the model used percent cover of berry-producing species as a surrogate for
productivity of berries. The use of these surrogates relied on assumptions about
their relationship to what they represented, and few ecologists would have diffi-
culty imagining circumstances under which those assumptions could be violated.
Nonetheless, as with any model, the relative merits of assumptions can only be
evaluated if the assumptions are stated. Contrast how assumptions can be evaluated
and tested in a model where fitness-based relationships are explicitly hypothesized
with those implicit yet undefined in a model that defines habitat simply as, say,
cover types. In the latter case, if a cover type is a perfectly predictive model for the
behavior of interest, a researcher or a manager cannot know why it was.

In effect, any mapped habitat model is either implicitly or explicitly a fitness
landscape representing a hypothesized or tested relationship between resources
available to an animal and how it uses them, whether or not this is recognized.
This fact should be dealt with explicitly and from the outset for any habitat model.
What fitness relationship is themodel intended to represent? Are those relationships
operant at the scale of investigation (e.g. it may make no sense to include resources
important to reproduction if observations used to build or test the model do not
include the breeding season)? Should others have been included and how does their
exclusion affect model performance? Under what circumstances could the assump-
tions of how the model captures fitness relationships be violated? A model that
cannot stand up to such scrutiny invites questions about the biology underlying its
predictions and, thus, about its usefulness for understanding or managing animals.

10.2 What is carnivore habitat?

Previous research on the habitat ecology of carnivores has focused too much on the
environmental variables that predict carnivore presence or density, and not on
variables with direct links to carnivore fitness. In the process, studies have often
neglected biological first principles defining what it is to be a carnivore. Many
carnivores are obligate predators; for these species, habitat definitions must include
explicit measures of biotic interactions with prey. Such measures must include
abundances and distributions of prey, and environmental characteristics that
facilitate capture of prey. Instead, hosts of studies relate occurrence, use, or
selection by carnivores to vegetation communities, digital elevation models,
remote-sensing variables, and other kinds of spatial variables easily obtained in a
geographical information system (GIS) framework. For example, Mace et al.
(1996) and Boyce and Waller (2003) examined habitat selection by grizzly bears
(U. arctos) in western Montana as a function of vegetation communities identified
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from Landsat-TM imagery combined with topographic and some human features.
Such an approach makes sense for omnivorous carnivores that rely heavily on
vegetative resources, and may even be useful at prediction. However, the merits of
these approaches are less certain for carnivores that are strongly reliant on mobile and
unevenly available prey. For example, vegetation communities and glacial features
explained little about use of space by wolves (Canis lupus) in the Canadian arctic
(McLoughlin et al. 2004); or by wolves in the Canadian Rockies (Hebblewhite et al.
2005). The assumptions that such variables are surrogates for availability of plant
forage for omnivores or of prey for carnivores are often unwarranted and infrequently
tested. That these habitat models, convenient to mapping, do not explain carnivore
behavior argues strongly for considering prey resources explicitly. Few studies of
habitat for carnivores include availability of prey species, fundamental to the persis-
tence of carnivores. Themain factor driving densities of obligate carnivores is food, i.e.
the density or availability of prey. (Miquelle et al. 1999; Fuller and Sievert 2001;
Carbone and Gittleman 2002; Fuller et al. 2003). The ratio of carnivore to prey
biomass scales to the reciprocal of carnivore mass (Figure 10.6, Carbone and Gittle-
man 2002). We do not argue that non-prey resources are irrelevant. Moorcroft et al.
(2006), for example, showed that coyotes (Canis latrans) avoided scent marks from
conspecifics in Yellowstone National Park; even in this case, however, prey density
explained much of the variation in coyote movements. Thus, if we wish to define
habitat in a manner that helps us understand why obligate carnivores do what they
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Fig. 10.6 Carnivore density (#/100km2) as a function of prey biomass for tigers (solid
circle and line); lion (gray), leopard (open/dashed), and Canadian lynx (*/—). Source:
Carbone and Gittleman (2002).
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BOX 10.2 Empty forest syndrome: comparing predictions from Amur tiger

habitat models with and without measures of ungulate prey availability

The forests of Asia are “empty” of large ungulate prey for tigers, leading biologists to
coin the term “empty forests” syndrome (Karanth et al. 2004a; Datta et al. 2008).
This syndrome occurs when environmental, structural aspects of tiger habitat are
present (forests, water, stalking cover) but the most critical factor, large ungulates,
are not. The main cause for “empty forests” is overhunting and poaching, which
leaves forests depopulated of sufficient ungulate prey for tigers (Miquelle et al.
1999; Karanth et al. 2004b). In this case-study, we illustrate the effects of empty
forest syndrome on predictions from resource selection function (RSF) models
developed for the Amur tiger in the Russian Far East. Basic study design is a
used–unused design, whereby large units where tigers were detected during inten-
sive winter snowtrack surveys during winter 2005 were compared to unused units
using logistic regression. This used–unused design corresponds to a true probabil-
ity. Miquelle et al. (2006) provided details of data collection.

The full analysis was conducted as part of predicting habitat for Amur tigers
expanding their range from Russia into the Changbaishan region of NE China (Li
et al. 2009). Russian biologists tracked Amur tigers in the snow during winter
surveys and also collected data on the tigers’ main ungulate prey species: sika deer
(Cervus nippon), roe deer (Capreolus capreolus), red deer (C. elaphus), wild boar (Sus
scrofa), musk deer (Moschus spp.), and the rare moose (Alces alces). Data of similar
resolution were not available in the Chinese portion of the study area. Hence, we
were interested in quantifying the effect of not including prey availability in RSF
models. We developed a two-staged approach to examine the effects of ungulate
prey on habitat modeling by (1) developing an “environmental” RSF model,
including surrogate environmental variables, such as land cover, elevation, net
primary productivity, and snow cover from MODIS satellites (Huete et al.
2002), that would be expected to correlate with prey distribution; and (2) develop-
ing a “biotic” RSF model that also included track density of the main ungulate prey
species. Modeling details were similar to Box 10.1.

The overall biotic RSF model was significant (Likelihood-ratio ratio w2 = 125�5,
p < 0.00005) and demonstrated good model fit (Hosmer and Lemeshow goodness
of fit test, test, w2 = 8�45, p = 0.35), and had better explanatory power, discrimina-
tory power, predictive capacity than the environmental model (Table 10.2). More-
over, in a model selection sense, the biotic model was over 10,000 times more likely
to be a better model compared to the environmental model (ratio of Akaike weights
of the two models). Clearly, knowledge of ungulate distribution and relative
abundance improved the ability of the model to predict tiger habitat. The biotic
model had superior discriminatory ability at predicting tiger habitat as measured
by an average ROC, pseudo-R2, and the k-folds cross-validation procedure
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BOX 10.2 Continued

(Table 10.2). ROC scores between 0.8 - 0.98 are indicative of excellent discrimi-
natory ability, echoed with the very high k-folds spearman rank correlation of
0.881. The biotic model provided a higher overall classification success for survey
units of 72%. Briefly, tiger’s selected areas with high densities of sika deer, red deer,
and wild boar in the ungulate model. Li et al. (2009) provided full details.

We compared the predicted distribution of tiger habitat probabilities between
the two models (Figure 10.7). This comparison shows that without taking ungulate
densities into account, the environmental model overpredicted the amount of

Table 10.2 Amur tiger resource selection function model diagnostics and covariate

structure for the best environmental covariate RSF model and the best ungulate RSF

model in the Russian Far East during winter 2004/2005. The top habitat and

ungulate models are compared using AIC, ROC, pseudo-R2, and k-folds spearman

rank correlations.

AIC ROC Pseudo-R2 k-folds

Environmental Covariate RSF Model 594.7 0.71 0.12 0.712

Ungulate RSF Model 531.8 0.89 0.25 0.881
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Fig. 10.7 Relationships between the probability of tiger selection and ungulate
track counts for red deer, sika deer, and wild boar from resource selection function
modeling for tigers in the Russian Far East, winter 2005. Resource selection was
assessed at the sample unit scale (135 km2), and the best linear predictions from
the logistic regression model from Equation 10.1 are shown against observed
sample-unit scale predictions (Pr(tiger selection)).
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do, including prey availability should be the critical first step in addressing carnivore
habitat ecology.

To be fair, quantifying the availability or abundance of prey across large spatial
scales for most carnivore species is difficult. This is the main reason why surrogates,
such as vegetation type or land-cover classifications from remote sensing, are often
used, despite few tests of these surrogates. Numerous recent studies have attempted
to integrate availability of prey resources into habitat-selection models for carni-
vores, however, and offer great promise for connecting habitat selection to popula-
tion processes. Hierarchical analyses of habitat selection by Amur tigers (Panthera
altaica) for the five main prey species available in the Russian Far East showed that
it was the distribution of their main prey, not vegetation communities per se, that
limited tiger “habitat” (Miquelle et al. 1996, 1999). Explicitly linking habitat
selection by tigers to their ungulate prey (and hence to tiger fitness) made the
case for controlling one of the main ecological reasons driving carnivore population
decreases—poaching of ungulate prey (Miquelle et al. 1999; Chapron et al. 2008).
Failure to include a biotic definition of habitat is the cause of the “empty forest
syndrome” discussed in Box 10.2. This example illustrates the conservation costs of
using poor, vegetation-only, definitions of habitat for obligate carnivores, and
makes a convincing case for relating fitness directly to prey abundance.

BOX 10.2 Continued

“high-quality” habitat available for tigers compared to the biotic model. The
consequences of this overprediction was a poor Spearman rank correlation between
the frequency of tigers and high-ranked categories of tiger habitat (environmental
model Spearman rank correlation, rs = 0.71, biotic model rs = 0.88). Therefore,
even on the Russian side of the border, environmental covariates were not adequate
spatial surrogates for ungulate data, and did not adequately capture the determi-
nants of ungulate distribution and abundance, resulting in an optimistic prediction
of the amount of high quality tiger habitat available. Results of our extrapolation of
the environmental model to areas without similar prey density data should overes-
timate the availability of “high” quality tiger habitat in a similar fashion.

Unless we explicitly model the key resources for carnivore—namely, their prey—
we risk creating habitat models for carnivores that are overly optimistic and leave
out the key fitness-drivers of population dynamics. In the case of tigers, the recent
criticisms of Project Tiger in India especially emphasize the critical conservation
importance of these mistakes. Many of the tiger reserves created especially for tigers
are devoid of the large prey that tigers need, driving tiger densities down to the
point where many tiger reserves are devoid of tigers, too.

OUP CORRECTED PROOF – FINAL, 6/12/2011, SPi

Carnivore habitat ecology | 231



Because many carnivores are threatened or limited by human activity, many
studies include the biotic interaction with humans as an important influence on
carnivore habitat. Thus, humans reduce habitat, changing the relationship between
fundamental and realized niches of carnivores on a landscape. Conceptually,
reducing conflict with humans would restore great amounts of “potential” habitat
for many carnivore species. Researchers have investigated effects of humans and
human developments on many carnivores, often focusing on roads. Gray wolves,
cougars (Puma concolor), jaguars (Panthera onca), Amur tigers, Tasmanian devils
(Sarcophilus harrisii), grizzly bears, and black bears all show that roads may be
important limiting factors in the environments of these carnivores (Thurber et al.
1994; Mladenoff et al. 1995; Jones 2000; Gibeau et al. 2002; Dickson et al. 2005;
Hebblewhite et al. 2005; Carroll and Miquelle 2006; De Azevedo and Murray
2007; Reynolds-Hogland and Mitchell 2007a; Cushman et al. 2009). Often, the
effects of human persecution depend on context. In National Parks in Alaska and
Alberta, for example, gray wolves do not avoid human activity inside protected
areas, but show typical avoidance of human activity outside (Thurber et al. 1994;
Hebblewhite and Merrill 2008). This context dependency explains recent debate
about the mechanisms of road avoidance in the Great Lakes region of North
America (Merrill 2000; Mech 2007). Thus, simply including human biotic inter-
actions with surrogate variables, such as road density or distances to roads, may not
capture the mechanisms of carnivore–human relationships.

10.3 Measuring habitat use and selection by carnivores

At least some of the confusion about habitat-selection studies can be attributed to
the bewildering number of ways that carnivore ecologists can design habitat
ecology studies: habitat suitability indices, resource-selection functions, resource-
selection probability functions, resource-utilization functions, compositional anal-
ysis, environmental niche factor analysis, occupancy modeling, classification and
regression trees (CART), genetic algorithm for rule-set prediction (GARP), maxi-
mum entropy, Mahalanobis distances, and the list goes on. Arguments and con-
fusions within the literature (Boyce et al. 1999; Keating and Cherry 2004; Johnson
et al. 2006) about the nature of statistical tests of habitat selection, while important
from a statistical viewpoint, do nothing to remedy the confusion for the practi-
tioner. Rigorous review of the statistical bases for all methods is outside the scope of
this chapter. Instead, we review the importance of critical considerations often
ignored: question-driven research, theoretical foundations for selectivity, scale-
dependency of ecological processes, effects of density dependency, study design,
and the relationships between different classes of habitat modeling approaches.
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10.3.1 The over-riding importance of questions

Any habitat model is an answer to a specific question about causal relationships
between an animal and its environment, whether the question is stated or not.
Without well-stated questions about these causal relationships, however, analytical
answers have limited or no meaning (much less usefulness). Yet the literature on
habitat studies is replete with answers for apparently one unasked question: what
is habitat for animal X? This approach presumes that understanding why the
animal is where it is, is not important, and the approach does not reveal causation
for observed effects. Such descriptive habitat models might pose credible explana-
tions for why animals are found where they are, but until such models are tested,
their credibility is unconfirmed and the cause and effect relationships implicit
within them are hypothetical. Unfortunately, confirmed causes for why animals
exist where they do are critical for conservation and recovery of a species, and
underlie habitat-based conservation. The scientific method, fully employed, offers
a comprehensive mechanism for understanding cause and effect habitat relation-
ships. Nonetheless, surprisingly few habitat studies make complete use of the
hypothetico-deductive logic it embodies. By far the most common approach to
modeling habitat is to construct statistical models and to interpret their biological
meaning a posteriori (i.e. the first two steps of the scientific method), resulting in
the generation of untested hypotheses about causation. To conclude causation
from an a posteriori hypothesis is to make the logical error of affirming the
consequent (Williams 1997). Until an a posteriori hypothesis is tested using
independent data (i.e. the remainder of the scientific method), its credibility and
usefulness is no greater than the myriad other, equally credible, a posteriori
hypotheses that could have been used to explain the same patterns.

Logically, causation can only be established by testing hypotheses, whereby
predictions from hypotheses derived empirically (e.g. from previous observations
or studies) or theoretically are compared to observations to determine their capacity
to predict empirical patterns; doing so can provide evidence for causation in two
ways that differ in their level of logical support. Hypotheses that are supported in
classic experiments, where the magnitude of effects are evaluated both in the
presence of hypothesized causes (e.g. environmental attributes in the case of habitat
studies) and where the causes are known to be absent (i.e. the control), provide
evidence of sufficient causation, wherein presence of the cause was alone sufficient
to produce an observed effect (Williams 1997). A common, but misguided,
justification for a posteriori analyses in habitat studies is that causation cannot be
established in ecological research because classic experiments are difficult to con-
duct. Controlled experiments, however, are not the only means to establish
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causation. Necessary causation can be established using observational studies, where
the magnitude of effects are evaluated only where hypothesized causes are present
and not where they are absent (generally the case for ecological studies); in these
cases, a supported hypothesis indicates that the proposed cause produced the
observed effect, at least in part, but other possible causes that were not evaluated
cannot be excluded (Williams 1997). Whereas establishing necessary causation
lacks the inferential strength of finding sufficient causation, it far exceeds the
logical rigor of generating an untested hypothesis that establishes no causation at
all. Testing meaningful, a priori hypotheses always provides stronger inferences
on the cause and effect relationships that underlie habitat selection, than failing
to do so.

Few circumstances exist where a researcher should choose to generate hypoth-
eses rather than test them. For the vast majority of habitat studies, the empirical
and theoretical fodder for constructing excellent hypotheses is vast, though often
neglected in favor of sophisticated statistical approaches to generating a posteriori
models. However sophisticated the means for generating an a posteriori habitat
model might be, though, what can be learned from such an untested hypothesis is
logically limited, compared to what can be learned through the test of any carefully
considered a priori habitat model, however simple. We argue that the best
approach to developing a robust understanding of carnivore habitat is to do a lot
of thinking in advance of collecting a single data point, figuring out what the
relevant questions motivating the study really are, and developing hypothesized
answers to those questions that can be tested using field observations. Doing this
thinking will increase inferential strength for the study; it will also allow effective
planning for the data needed, the necessary sample sizes, the hardware required, the
analytical framework, etc., needed to maximize study success and effectiveness of
conservation applications based on the research.

10.3.2 Why should carnivores be selective?

A fundamental but rarely considered question for those who embark on habitat
study is “why do we expect that habitat should predict animal behavior or
population dynamics?” The clear answer is that natural selection has shaped
behavior of animals to be selective, and that they will generally choose to exploit
those places providing the resources that most contribute to their fitness. Without
this assumption, no reason exists for quantifying relationships between behavior
and habitat. Nonetheless, the theoretical foundations underlying the assumption
are often completely ignored or even denied. The discipline of optimal foraging
(Pyke et al. 1977; Pyke 1984; Stephens and Krebs 1987) is devoted to exploring
precisely the fitness-based behaviors assumed in habitat analyses. Habitat research,
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in fact, is no more than a subdiscipline within optimal foraging, yet habitat studies
rarely take advantage of the rich theoretical and empirical background available to
them from this field of inquiry.

When applied to habitat selection, the optimal-foraging approach explains both
the central tendencies we expect to see (optimizing phenotypes), and the variation
around those central tendencies (e.g. error associated with learning through iter-
ated experiences, extrinsic influences of competition, variation in resource produc-
tivity, etc.). The challenge common to studies of both foraging decisions and
habitat selection is discerning the expression of the optimizing phenotypes amidst
the processes that shape and influence them. Generally, habitat studies pursue a
straightforward, if simplistic, approach to this question, using proportional use as
an indicator of habitat value. This is directly analogous to Charnov’s (1976a)
model of optimal choice of prey, whereby proportions of different prey types in a
predator’s diet result from an iterated decision-making process that maximizes
profitability of the diet by weighing the benefits of consuming an encountered prey
against the costs of capturing it. Note, however, that whereas the prey model is
explicit about the economic mechanism determining the proportional representa-
tion of prey types in a diet, habitat analyses assume such mechanisms result in
disproportionate use of habitat features without specifying what they are; dispro-
portionate habitat-use is thus taken as prima facie evidence of selection. This is a
safe assumption when proportional use of habitat characteristics differs from that
available and extrinsic factors, such as predation, competition, and population
density, have little effect on habitat use. The absence of mechanistic explanations is
problematic for forecasting or extrapolating, however, where such factors play
important roles.

Using a fitness-based definition of habitat based on resource distribution and
productivity promotes quantifying the benefits of selecting habitat characteristics
(for a rare example, see Andruskiw et al. 2008), but costs and constraints that also
influence selection can be more difficult to quantify. Finding the means to identify
and to measure these costs and constraints on optimal use of resources is one of the
defining challenges for the future of habitat studies. Inevitably, costs and con-
straints of habitat use will be measured as imperfectly and indirectly as the benefits.
Nonetheless, even simplistic measures of costs and constraints offer strong explan-
atory improvement to habitat models. For example, relatively coarse measures of
resource depression, travel costs, and conspecific avoidance have strong explanatory
power in predicting how animals balance costs and benefits of habitat use in their
selection of home ranges (Mitchell and Powell 2004, 2007; Moorcroft and Lewis
2006; Moorcroft et al. 2006; Moorcroft and Barnett 2008; van Beest et al. 2010).
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10.3.3 The importance of scale

Habitat is inherently scale-dependent (Figure 10.1). When considering scale, most
habitat researchers immediately think of Johnson’s (1980) nested scales of habitat
selection, including 1st order (geographic range of the species), 2nd order (place-
ment of home ranges within the range of the species), 3rd order (use of habitat
patches by an individual within its home range), and 4th order selection (foraging
within patches). These scales outline a continuum of behaviors producing ecologi-
cal patterns that depend on the geographical and temporal scales of observation.
Johnson’s scale, however, is categorical, whereas space and time are continuous.
Thus, even within Johnson’s scales of habitat selection, observations and therefore
inferences can vary strongly depending on the spatial and temporal scales of
observation (Figure 10.1). The important context of spatial and temporal windows
of observation is often misunderstood or ignored when modeling habitat (Boyce
2006). Because this context drives the robustness and usefulness of habitat models,
a researcher needs a strong understanding of the variation in the ecological
processes driving habitat selection during observations. Thus, space and time
define a window of observation within which ecological processes are often
uniquely expressed. Conceptually, this is intuitive: observing an animal during a
single day precludes extrapolation of its behavior over a year. Intuitiveness can
break down, however, when explanatory patterns at one spatio-temporal scale are
absent, completely different, or even reversed at another scale.

Knowing a priori how a spatio-temporal window of observation or application
frames what can be learned about ecological processes is challenging. Hierarchy
theory (Allen and Starr 1982; O’Neill et al. 1986; King 1997) offers a conceptual
framework for inferring a priori mechanisms, whereby ecological processes are
understood in terms of both lower level mechanisms and higher level constraints. A
researcher can begin designing a study by placing his or her question on the spatio-
temporal continuum of ecological processes (Figure 10.1) and asking whether the
spatial and temporal extents required to answer the question are feasible for study.
If not, how could the question be changed so that its answer can be found within
an ecological process observable within realistic constraints on time and space?
Perhaps this seems obvious, but it can be argued that the spotty predictive record
for habitat models (Garshelis 2000) can at least in part be attributed to failure to
acknowledge hierarchical structure of ecological systems, whereby decisions by
animals influencing their use of habitat at broad temporal or spatial scales were
naively modeled using data collected over short time periods and within small
spatial extents. Additionally, studying a phenomenon at one scale, and assuming
that it scales up or down linearly to another, presumes a perfectly nested hierarchy
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with no emergent properties across spatial and temporal scales. This presumption is
highly questionable in ecological systems (Allen and Starr 1982; O’Neill et al.
1986; King 1997). To avoid such outcomes, Reynolds-Hogland and Mitchell
(2007b) suggested that habitat studies could be conceptually organized according
to hierarchy theory using three intersecting and interdependent axes: time, space,
and ecological process of interest. The ecological axis is, by definition, hierarchi-
cally organized, such that any point selected along that axis has a correspondingly
appropriate intersection point on the time and space axes. A shift in any one of the
axes (e.g. a smaller temporal window of observation, or a different resolution for
the ecological process) requires concomitant shifts in the other axes.

Results of habitat studies are extremely scale-dependent. Failure to acknowledge
and plan for such dependency can result in misleading inferences (Boyce 2006).
Understanding the hierarchical organization within an ecological system before
attempting to tease out its processes in space and time is essential for successful,
applicable habitat research.

10.3.4 Density dependence and habitat selection

The effects of population density on habitat selection are important yet underap-
preciated (Fretwell 1972; Rosenzweig 1981; Haugen et al. 2006; McLoughlin et al.
2010). Extending optimal foraging-type models, Fretwell (1972) showed that, for
animals foraging to increase fitness, habitat (patch) selection would be affected by
the density of conspecifics in a density-dependent fashion. Given the two basic
assumptions, that individuals have “ideal” knowledge about the distribution of
resources and that they are “free” to move between patches to maximize fitness, as
density increases, animals will select patches in a frequency dependent fashion that
equalizes realized fitness among individuals. This scenario results in an evolution-
ary stable strategy, where individuals make the best of a bad situation as density
increases and no individual can achieve higher fitness. The density ratio between
two patches at ideal free distribution is the habitat “isodar,” which reflects differ-
ences in demographic quality between habitat patches (Morris 2003a, 2003b). The
“ideal free distribution” predicts habitat selection for a wide variety of species
(Oksanen et al. 1995; Beckmann and Berger 2003; Haugen et al. 2006; Griffen
2009). Unfortunately, the ideal free distribution has been tested only once for
carnivores (black bears; Beckmann and Berger 2003), yet many studies assume
density equates to fitness, clearly not the case under this form of habitat selection.
Testing predictions of ideal free distribution theory should help carnivore ecolo-
gists understand the mechanisms governing habitat selection, even when animals
clearly are neither ideal nor free.
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As an extension of the ideal free model, consider territorial animals that are not
“free” to move. Here, animals are divided into territory holders and non-territorial
animals. Territory holders take the best real estate for themselves and achieve high
fitness payoffs, making an “ideal despotic distribution” (Fretwell and Lucas 1970)
in which density and fitness are not necessarily equal. The ideal despotic model has
predicted spacing of Serengeti lions (Mosser et al. 2009), male black bears in
California (Beckmann and Berger 2003), wolves in Yellowstone National Park
(Kauffman et al. 2007), and other carnivores. Unfortunately, few studies, and
almost none with carnivores, have examined (or acknowledged) the potential role
of density in shaping habitat selection. Habitat selection by carnivores should
change in density dependent fashions.

10.3.5 Understanding habitat selection: study design

Selection implies a behavior shaped by natural selection, whereas use is the
observed outcome of that behavior. Some research questions lend themselves to
understanding patterns of use, such as utilization distributions (Millspaugh et al.
2006), analyses of the amount of use (North and Reynolds 1996), and hazard
models of resource use rates (Freitas et al. 2008). Understanding the process of
selection, however, provides the only opportunity to address why or how a
particular pattern of habitat use is achieved, particularly given the multiscale nature
of habitat. For this reason, we focus on selection, studying the use of resources by
an animal and also what resources could have been used but were not. Two main
different sampling protocols underlie almost all habitat-selection studies: compar-
ing (1) used resources with unused resources, or (2) used resources with available
resources. A third design compares unused resources with available resources
(Manly et al. 2002) but we know of no example of this design.

Used–unused (presence–absence) designs are perhaps the more powerful and
straightforward for habitat-selection studies because we can use any number of
statistical frameworks to compare attributes of used versus unused units and we can
make inferences about utility of habitats from the resultant statistical functions.
A common statistical framework for comparison is logistic regression, which uses a
binary response variable for used and unused (Hosmer and Lemeshow 2000).
When density or counts are modeled, generalized linear modeling (GLM) frame-
works, such as Poisson, probit, zero-inflated Poisson, or zero-inflated negative
binomial models are used (Guisan et al. 2002; Manly et al. 2002; Nielsen et al.
2005). Common used–unused data include remote-camera trapping (animals are
either photographed or not-photographed); vegetation plots where plants are either
present or absent, eaten or not eaten; mark–recapture trapping, photographing,
and DNA sampling; and aerial surveys where animals are seen or not seen. The key
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here is that a survey unit was sampled and had a probability of either containing the
animal (i.e. p) or not containing the animal (1 – p), and that sampling had no bias.

When animals occupying a unit may not be observed, resulting in a false
absence, then detection probability <1 (MacKenzie et al. 2005; see Chapter 4).
Occupancy models that explicitly incorporate detection probability into the habi-
tat model are beneficial, especially when detection probability itself is a function of
habitat (MacKenzie et al. 2005; Hines et al. 2010). To estimate probability of
detection, repeated sampling of units is required. For example, when a carnivore
that is detected in 3 out of 5 surveys of a sample unit, detection probability is 3/5,
or 0.6, and the probability is 0.4 that the carnivore occupies units where it was not
observed (under a set of assumptions, MacKenzie et al. 2005). Marucco and
McIntire (2010) used this approach with wolves. If detection probability is
constant, or if multiple sampling is not conducted, then the used–unused design
reduces to the use–availability design. In this case, relative probability of detection
is estimated, which is still extremely useful for conservation and management.

Use–available (presence-only) design only has information about where animals
used habitats (Pearce and Boyce 2006). Radio-telemetry studies are perhaps the
most common method used to collect such data, and use–available designs
are among the most common for analysis of habitat selection. Other studies with
the use–available design include studies of animal distributions from museum
collections (Pearce and Boyce 2006), aerial surveys where detection probability
<1, scat analyses, and track count surveys. Resource selection functions (RSFs) and
environmental niche factor analysis (ENFA or niche-factor analysis, Hirzel et al.
2002) are used commonly to compare used and available locations. Niche models
are identical to RSFs from a study design perspective because used locations are
compared to what is available within some defined study area. Thus, distinctions
between different use–available designs are often false.

The distinction between a use–available design and used–unused design, how-
ever, can sometimes be tricky and often researchers can adopt both designs with the
same data. For example, researchers conducted surveys over 10-km2 grid cells in
northern Ontario for wolverines (Gulo gulo), recording the presence or absence of
wolverine tracks (Krebs et al. 2004). Their goal was first to describe the distribution
and occurrence (use) of wolverines, yet this rich dataset clearly could be used with
habitat-selection models. Both a used–unused design (units with and without
wolverine tracks) or a use–available design (units with wolverine tracks versus the
entire study area) could be adopted. Moreover, in this case, a used–unused design
could be extended to a true occupancy model because sites were surveyed multiple
times and detection probability could be estimated. Which study design is the
“best” to use in this case? The answer depends on the research question. If knowing

OUP CORRECTED PROOF – FINAL, 6/12/2011, SPi

Carnivore habitat ecology | 239



a relative probability is sufficient for conservation, then a used–available design is
fine. If the true detection probability is needed, then the additional costs of
collecting multiple sampling rounds was worth doing.

Within these two broad categories of study designs in habitat-selection studies,
data can be collected and inferences applied among populations and individuals
levels on at least three levels. Often, researchers collect data on wildlife only at the
population level with no information about individual patterns of use, non-use,
and availability. Manly et al. (2002) called this Design I (see Chapter 11).
Common examples include aerial surveys, track or scat transects, distance sam-
pling, diet selection based on scats, 2nd order scale (Johnson 1980) comparisons of
resources used within animal home-ranges compared to what they could have used
across the whole study area. In this design, animal observations occur at the
population level and data include what animals did not use or was available to
them. In Design II, inferentially between the population and individual level,
resource use by individual animals is recorded but not where individual animals did
not occur, or what was available to individual animals. Availability is measured at
the population-level. An example includes observing individual bighorn sheep on
aerial surveys or distance sampling and comparing their individual use of resources
to that which was available to the entire population (Manly et al. 2002). For
Design III, use and availability or lack of use is known at the individual level.
Radio-telemetry is the most common tool for this design. An example is habitat
selection by individually snowtracked wolves, compared to availability sampled
along individual movement paths (Whittington et al. 2005). Costs and benefits of
the different study designs depend on the research question and cost. Design I
studies are often relatively inexpensive but lack mechanistic insights into why
carnivores select habitat.

10.3.6 Using resource-selection functions and other approaches

In the North American literature, resource selection functions (RSFs) have gained
prominence in habitat-selection studies (Boyce and McDonald 1999; Manly et al.
2002), although they are conceptually identical to niche-factor analyses that
compare presence-only data to availability within a fixed study area. Other model-
ing approaches include maximum entropy models (MAXENT, Peterson and
Robins 2003; Phillips and Dudik 2008), habitat suitability index models (Brooks
1997), and occupancy models (MacKenzie et al. 2005). Manly et al. (2002)
defined RSFs as any function that is proportional to the probability of use, so
this broad definition encompasses almost all other types of habitat models that
could be conceived.
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For the most common used–unused study designs, the used and unused sample
units are commonly contrasted with logistic regression using the following equa-
tion (used–unused):

ŵðxÞ ¼ exp ðb0 þ bX Þ=
�
1þ exp ðb0 þ bX Þ

�
;

where ŵðxÞ is the probability of selection as a function of variables xn, b0 is the
intercept, and bX is the vector of the coefficients b̂1x1 þ b̂2x2 þ :::þ b̂nxn esti-
mated from fixed-effects logistic regression (Manly et al. 2002).

In applying the used–unused design, ŵðxÞis a true probability and is referred to
as the resource selection probability function (RSPF).

For the use–available design, the resultant function is a relative probability, and
is estimated using:

ŵ � ðxÞ ¼ exp ðbX Þ;
where ŵ � ðxÞ is the probability of selection as a function of variables xn, and bX
is the vector of the coefficients b̂1x1 þ b̂2x2 þ :::þ b̂nxn estimated from fixed-
effects logistic regression (Manly et al. 2002).

In the use–available design, because the true sampling fraction is unknown, the
prevalence of use, or the absolute amount of use, cannot be estimated and, hence,
the intercept is meaningless.

RSFs have been commonly used to develop a posteriori statistical models to
describe habitat (i.e. to generate hypotheses) but they also lend themselves readily
to hypothesis testing, as do other modeling approaches. The selection of environ-
mental variables, xn, for inclusion in RSF analyses implicitly reflects hypothesized
contributions of habitat characteristics to selection. Stating these hypotheses
explicitly makes clear their biological justification for inclusion in a habitat
model; the proximity of coefficients, b̂n to 0 (i.e. whether 0 is included in the
confidence intervals for b̂n) and their relative magnitude estimated by logistic
regression, thus, represent tests of the hypothesized contribution of each variable
to habitat selection. Hypotheses about the relative importance of specific habitat
features to specific carnivores, and about the importance of combinations of those
features, can be tested by evaluating competing multivariate RSF models (using
Akaike’s Information Criterion, AIC; Burnham and Anderson 2002). Ciarniello
et al. (2007) demonstrated a novel way of testing hypotheses through cross-
validation of RSFs generated for the same species at different study sites. Testing
the ability of an RSF generated on one dataset to predict observations for an
independent dataset remains the most robust means of using RSFs to test the
hypothesized causes and effects of habitat relationships.
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Considerable debate about RSFs has centered on the statistical mechanics and
the interpretation of functions estimated from use–available designs. The problems
are that contamination arises because some available points may actually contain
used points and that the overall prevalence in a logistic model with a use–available
design is unknown (Keating and Cherry 2004). These problems exist, but so long
as the output from a logistic regression based on use–available design is treated as
relative, resources or habitat quality can be interpreted validly (Johnson et al. 2006;
Lele and Keim 2006). The debates, unfortunately, have taken focus away from the
ecology of habitat selection (McLoughlin et al. 2010). Readers can read the
relevant literature (Boyce and McDonald 1999; Manly et al. 2002; Johnson
et al. 2006; Lele and Keim 2006).

Researchers should adopt a particular modeling approach only if it is useful.
A researcher must know how a model will be used and have some way of measuring
the predictive accuracy, precision, or generality of the model. To measure the latter
for used–unused models, typical logistic regression diagnostics apply; for use–
available designs, the problems of defining availability renders these approaches
suspect (Boyce et al. 2002). Regardless, cross-validation, both with internal and
external data, is necessary to test the predictive accuracy and utility of a habitat
model (Roloff et al. 2001; Boyce et al. 2002; Johnson and Gillingham 2005;
Johnson et al. 2006). Cross-validation also provides insight into how robust a
habitat models is to aspects of study design, such as autocorrelation, non-indepen-
dence, multicollinearity, and sample size (Manly et al. 2002; Johnson and Gilling-
ham 2005; Gillies et al. 2006). Typically, in a k-fold procedure, a researcher divides
data into k-partitions and cross-validates the predictive capacity between observed
frequency of use and predicted frequency of use across the partitions of the data.
This is internal cross-validation because the data used to generate the model is used
to test different “versions” of the model. Conceptually, this is similar to evaluating
model fit with the coefficient of determination, and gives a measure of how well the
data are explained by the model. Boyce et al. (2002), however, showed substantial
annual variation in predictive ability of RSF models for boreal songbirds, throwing
caution on the utility of the “average” year model in predicting distribution over
time. In addition, biased datasets may show good internal validation despite being
ecologically wrong.

Obviously, a far better way to test generality, accuracy, and precision of a model
is to compare model predictions to independent data, i.e. external validation.
Independent data can be collected in different years, different study areas, and
with different technology (e.g. GPS vs. VHF data). Ultimately, only the test of
time reveals how “useful” a particular habitat model is. In perhaps the best example
of model validation, Mladenoff ’s et al. (1999) tested a previously developed RSF

OUP CORRECTED PROOF – FINAL, 6/12/2011, SPi

242 | Carnivore Ecology and Conservation



for the expanding gray wolf population in the Great Lakes states of the US against
new data collected later. The initial RSF model predicted accurately the wolf
distribution 5 years later (Figure 10.8). More often, model validation reveals
systemic problems with the model, such as poor prediction across individuals, or
spatial differences in habitat selection that suggest selection may vary systematically
as a function of some biological gradient (called functional responses in resource
selection, Mysterud and Ims 1998).

10.3.7 Functional responses in resource selection

One extremely important ecological mechanism is the variation in the strength of
selection as a function of availability. Such functional responses in resource
selection for spatial variables (habitat) may be extremely common in carnivores,
and parallel the concept of frequency dependence in non-spatial selection of prey,
which has been recognized for a long time (Greenwood and Elton 1987). Func-
tional responses address how selection for a spatial resource should change as that
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Fig. 10.8 Spatial predictions of gray wolf habitat in the American Midwest by Mladenoff
et al. (1999) made using data from 1979–92 (wolf pack polygons in white) tested
against observed distribution of new packs (black boundaries) observed during
1993–98. Model fit was remarkably high, and the model was able to predict colonization
of new smaller patches previously unused by wolves. Source: Mladenoff et al. (1999).
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resource changes in availability (Mysterud and Ims 1999). For example, selection
for oak forests (and, presumably, the productivity of acorns) by gray squirrels
(Sciurus carolinensis) declines with increasing availability of oak forests on the
landscape (Mysterud and Ims 1999). Functional responses should be common
whenever animals make a tradeoff between two resources, or when thresholds exist
for resources. Understanding functional responses in resource selection, therefore,
allow researchers to develop habitat models that are general, flexible, and able to
predict resource selection in novel settings (Matthiopoulos et al. 2011). Applica-
tion of mixed-effects models to the study of resource selection enables researchers
to investigate functional responses across individuals (Gillies et al. 2006).

Two important studies of carnivores relate show how functional responses
in resource selection relate to frequency-dependence. As the availability of land
increases in polar bears’ (Ursus maritimus) home-ranges, bears select for ice closer to
land, which affords greater hunting opportunities, (Mauritzen et al. 2003a), typical
of a tradeoff between areas good for hunting and areas good for resting. An analysis
of functional responses of wolves to human activity helped Hebblewhite and
Merrill (2008) to synthesize conflicting results of wolf–human interaction studies.
Previous studies of wolves’ responses to roads showed attraction, ambivalence, and
avoidance. Such results caused Mech et al. (1988) to conclude that wolves showed
no consistent responses to human activity. What previous studies had not done,
however, was address how selection changed as a function of the availability of
human activity. Hebblewhite and Merrill (2008) found that avoidance of human
activity by five wolf packs living in different human activity levels, depended on the
overall amount of human activity in their pack territories. Packs with little human
activity in their territories showed weak or no responses, whereas packs with high
human activity showed strong avoidance, especially outside of protected areas. This
and other recent examples of wolf–human functional responses (Houle et al. 2010)
illustrates the power of understanding functional responses to produce syntheses of
previous studies and to produce a solid framework for understanding carnivore–
human relationships. We expect that carnivores commonly exhibit functional re-
sponses in resource selection. The most powerful approach to understanding func-
tional responses is to combine an understanding of frequency dependence in prey
selection (Greenwood and Elton 1979) with functional response analysis of spatial
selection for these same prey species by a predator.

10.3.8 The importance of defining availability: recent advances

from the field of movement modeling

Inferences from habitat-selection modeling with the use–availability design are
highly contingent on how availability is defined (Beyer et al. 2010). Unfortunately,
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no biologically objective means of calculating availability exist; researchers can only
infer indirectly what resources an animal considers to be available from what it did,
compared to what we imagine it could have done. Further, the concept of
availability is inherently scale-dependent and depends on the spatial scale at
which resource selection is investigated. In other words, no “correct” way exists
to sample availability. Many studies have compared telemetry locations for an
animal to a set of random locations within its entire home-range (i.e. 3rd order
selection; Johnson 1980), making the implicit assumption that animals can move
anywhere within their home ranges at any time between successive locations.
While this assumption could biologically be true for some highly mobile carnivores
(e.g. wolves), it is clearly unrealistic for many others. And, with the growing use of
global positioning system telemetry collars (GPS) in carnivore research, assuming
that a carnivore can go anywhere within its home range between locations that are
mere minutes apart, is unrealistic. Moreover, the debate over the use–available
design has confirmed that the way this design had been applied in previous studies
has problems. Improved understanding of availability is needed.

Fortunately, GPS technology has helped ecologists define availability some-
what more from an animal’s behavioral perspective, and these definitions help
circumvent some of the other problems with the use–available design. A study on
turtles started it all. Comparing locations of slow-moving wood box tortoises
(Clemmys insculpta) to random locations across their home ranges made no sense
to Compton et al. (2002). Consequently, the authors borrowed a statistical method
from the biomedical literature, matched-case control logistic regression, and
defined availability as the area each tortoise could have reached from each location,
based on its history of movements (Figure 10.9). The used and available locations
are then compared using a conditional logistic regression model (also known as
case-control, paired logistic and conditional logistic regression; Hosmer and Leme-
show 2000). The key here is that each used location is paired against n number of
cases that represent where the animal could have actually moved (availability). The
conditional likelihood of the logistic model takes into account what was available at
each step and, consequently, the inferences from the overall model are conditional
on the availability at each time step (Aarts et al. 2008; Moorcroft and Barnett
2008). This is now the recommended approach for determining availability in the
use–available design at the individual level, especially including weights of “avail-
able” locations at different distances. Whittington et al. (2005) adopted this design
to demonstrate that wolves avoid human activity in Jasper National Park, Alberta.

A caveat to this approach, however, is that restricting available points based on
movement rates defines the scale of selection under evaluation (Forester et al.
2009). On a continuum of infrequent to frequent locations, the decisions being
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modeled by this approach transition from Johnson’s (1980) 3rd order selection to
something on a finer scale, perhaps to Johnson’s 4th order. Alternatively, the
resources selected by an animal while it moves are environmental characteristics
that facilitate safe and efficient travel. This begs an interesting question about how
decisions made during movement represent selection in their own right vs. the
extent that these decisions are structured and constrained by selection at higher
orders. In the first case, decisions made during movement may very well represent
an order of selection new to the nested orders traditionally considered, requiring
further theoretical development before empirical results are fully understood. In
the second case, selection of a travel route may be nothing more than the most
convenient way to move between two selected habitats, rendering the notion of
habitat selection during movement moot.

10.3.9 Quantifying resources

Two approaches, which can be combined in some cases, exist for examining
resource availability at used and unused or available locations. The first is a
“macro” approach to measure resource availability at broad landscape scales using
spatial GIS models (Franklin et al. 2001; McDermid et al. 2005, 2009). This
approach has been used most successfully for abiotic or loosely biotic variables,
such as vegetation cover, topographic variables (digital elevation models), and
human-related variables, such as distance to roads or road density.

Random ‘Paired’
Locations

t = 1

2
3

4

Fig. 10.9 Matched-case control sampling design for use–available study designs with
animal-tracking data. Sampled locations (black circles) are paired with biologically
realistic samples of “availability” given where the animal could have gone at time t = 3
in this example. Random paired available points can be generated from the observed step
length from t = 3 to t = 4, or the empirical step length and turning angle distribution for
the vector of animal relocations along the entire path t = 1 to 4, in this case.

OUP CORRECTED PROOF – FINAL, 6/12/2011, SPi

246 | Carnivore Ecology and Conservation



The second is a more “micro” approach, whereby small-scale habitat covariates
are measured at sites used and unused or available by using standard field-based
monitoring approaches. For example, Kunkel et al. (2004) measured the availabil-
ity of vegetative cover, tree species, and snow depth along travel routes of wolves,
compared to areas where wolves killed ungulate prey, and compared to “random”

areas not along travel routes. Values for such micro-variables are expensive and
time-consuming to collect but often provide richer mechanistic insights into the
factors influencing different stages of carnivore habitat selection, such as hunting,
resting, or attacking.

Both approaches usually rely on availability of static or abiotic surrogates that do
not reflect what was truly available to an animal, leading to two problems. First,
maps of “static” vegetation types do not really reflect availability of resources for
most animals, including carnivores. While a static land-cover model using different
forest cover types (such as spruce, open conifer, shrubs, grasslands) has some
explanatory power as a habitat model, it does not capture what might be important
to a carnivore in a dynamic sense. For example, if we accept that prey are a critical
biotic resource for many carnivores, grassland land-cover types could have dramat-
ically different “value” to an ungulate over the course of a year, and hence, to a
carnivore (Hebblewhite et al. 2008). Moreover, many spatial covariates (such as
vegetation and snow cover) are temporally dynamic, yet habitat-selection models

BOX 10.3 A prey-based habitat model for gray wolves in Banff National Park

Gray wolves are the most widely distributed terrestrial, mammalian carnivore in the
world (Mech and Boitani 2003). They require only the availability of large ungulate
prey. As such, wolves are habitat generalists and densities are driven solely by
ungulate biomass (Fuller and Sievert 2001), except when limited by human-caused
mortality.

In this example, we illustrate including prey availability directly into habitat-
selection models. Our goals here are to compare habitat-selection models based on
just environmental covariates, to those based on prey availability, to illustrate the
insights gained by explicitly considering prey availability, and also the drawbacks of
such an approach.

We developed use–available resource selection functions (RSF, Boyce and
McDonald 1999) for VHF telemetry locations for 14 wolves during winters
2001–05 in Banff National Park (Hebblewhite et al. 2002; Hebblewhite 2005).
We estimated 99% kernel home ranges with a 6-km band width. We accounted for
correlation within packs using a random effect for each wolf pack. Attributes of
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BOX 10.3 Continued

used locations were compared to those of available locations using a mixed-effects
logistic regression model (Gillies et al. 2006) that yielded a relative probability of
wolf use of a resource type. We considered two broad types of models: (1) “typical”
RSF models as a function of spatial covariates, including topographical variables
(elevation, slope) and land cover type derived from LANDSAT imagery (McDer-
mid et al. 2009); (2) “biotic” RSF models that explicitly modeled prey availability
and distance to high human activity (Hebblewhite and Merrill 2008). We used a
previously developed habitat suitability index for prey (Holroyd and Van Tighem
1983). Moose, deer (white-tailed, Odocoileus virginiana, and mule deer O. hemi-
onus), elk, bighorn sheep (Ovis canadensis), and mountain goat (Oreamnos amer-
icanus) models were considered. Wolf diet was ~50% elk, 30% deer, 10% moose,
and 10% other species, such as bighorn sheep and mountain goats (based on
biomass, Hebblewhite et al. 2004). Thus, we predicted that 3rd order habitat
selection within the home ranges of wolf packs would correspond to previous
results of diet selection. Despite the importance of this hypothesis, which would
allow us to scale up to spatial distributions from simple and easy to collect diet
studies, few ecologists have tested the generality of correspondence between scales
in carnivore habitat studies.

Covariates were screened for colinearity using a liberal correlation cutoff of
r > 0.7 (Menard 2002). We used stepwise-AIC model selection to select the top
typical and biotic RSF model, and compared the two models using AIC, and
predictive capacity using k-folds cross-validation (Boyce et al. 2002). Because this
model was use–available, using normal logistic regression diagnostics was invalid
(Boyce et al. 2002).

Comparing the top typical and biotic models illustrates the tradeoffs carnivore
ecologists will often face between predictive capacity and ecological understanding
with habitat-selection models. The typical covariate model was by far the best
model from an AIC perspective, with the biotic model over 66 AIC units “worse”
than the typical model. Nonetheless, examination of the models’ abilities to predict
within-sample wolf telemetry data revealed that the biotic model fared better,
explaining 10% better than the typical model. Coefficients for all models were as
expected from previous studies on wolves in mountainous terrain (Oakleaf et al.
2006; Hebblewhite and Merrill 2008) and the rank order of predictions from the
diet of wolves in Banff matched the rank-order of selectivity coefficients from the
RSF model (Table 10.3, Figure 10.10). The relative probability of the five ungulate
prey species changed as a function of habitat quality, confirming that as diet
suggests, wolves avoid goat and sheep habitat, and select for moose, and deer, and
elk approximately equally (Figure 10.10).
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BOX 10.3 Continued

Insights from this biotic-RSF model are limited by the usual restrictions of
regression-based studies. These regression models do not demonstrate whether
wolves are really selecting elk or deer because these prey species were highly
correlated in space; likewise for avoiding goats and bighorn sheep. Wolves could

Table 10.3 Resource selection function (RSF) model structure and diagnostics for

the top competing environmental covariate and biotic covariate models for wolves in

winters 2001–05 in Banff National Park, Alberta, in two wolf packs.

Model
Logistic Model Structure and Coefficients
(K = number of parameters) AIC

k-folds
Spearman
rank
correlation

Environmental
covariate
model

K = 10, 1587 0.83
Pr(Use) = –0.005*Elevation + 1.67*Burn +
0.67*Water + 1.4*Shrub
+0.28*OpenConifer +
0.28*ModerateConifer + 1.44*MixedForest
+ 1.14*Herbaceous –2.9*Alpine

Biotic covariate
model

K= 7
Pr(Use) = -0.439*DistHuman –0.23*Sheep
–0.48*Goat + 0.72*Elk + 0.30*Moose +
0.66*Deer

1653 0.92

Notes: elevation is in meters; see Hebblewhite & Merrill (2008) for explanations of the landcover
covariates; DistHuman is the distance, in kilometers, to high human access, defined by Hebblewhite and
Merrill (2008).
* = �
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Fig. 10.10 Relative probabilities of use of five ungulate prey species by wolves as a
function of relative habitat quality for five ungulate prey species in the Canadian
Rockies from Resource Selection Functions.
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have done little to link the spatially dynamic resource selection process to similarly
dynamic measures of resource availability (Hebblewhite 2009). The growing access
to remote-sensing products that measure the dynamic availability of forage,
through indices like the normalized difference vegetation index (NDVI) and
snow cover through MODIS satellites, means that future carnivore habitat models
should be dynamic measures of resource availability (Hebblewhite 2009).

The second more critical problem is capturing the availability of dynamic, biotic
resources, such as prey availability. A growing number of studies do include biotic
covariates in habitat models (Miquelle et al. 1999; Hebblewhite et al. 2005;
Heikkinen et al. 2007; Webb et al. 2008; Basille et al. 2009; see Box 10.2).
While collecting sufficient data on availability of prey across large areas for many
carnivores is difficult, carnivore habitat studies will increasingly include mechanis-
tically measures of prey availability (Box 10.2, Box 10.3). Recent advances in non-
invasive monitoring will certainly help. Camera-trapping and snowtracking can
collect data on prey and predator simultaneously (Stephens et al. 2006).

10.4 Linking habitat selection to population consequences

Numerous authors have addressed the difficult conceptual and empirical challenge
of linking habitat selection by individuals to population consequences (reviewed by
Fryxell and Lundberg 1997). Here we focus on three empirical approaches with a
demonstrable record for carnivore studies and that are perhaps the best scientifi-
cally defensible approaches: (1) population extrapolation based on habitat models,
(2) combining habitat models with spatial models of mortality risks to develop core
and sink habitat maps, and (3) spatially explicit models of population viability. No
particular method is necessarily superior but note that data requirements, com-
plexity, and assumptions increase from method 1 to 3.

BOX 10.3 Continued

be selecting elk but, because they encounter deer between predictable elk patches,
deer could, actually, not be actively selected by wolves (sensu Huggard 1993). To
tease this apart requires comparisons among wolf packs with different availabilities
of prey (e.g. a functional response). Regardless, this example illustrates the exciting
biological hypotheses that can be generated if we move from merely trying to
predict habitat selection by carnivores to understanding the mechanisms of how
prey availability drives carnivores.
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10.4.1 Habitat-based population estimates

This approach combines habitat modeling with information about population
densities to predict the number of animals in a given area, and has strong potential
for answering questions about mechanistic links between habitat and population
sizes and distributions. The principles behind this approach are first to model
habitat selection, relate this habitat model to known abundance in the same area,
and then to extrapolate the potential population size and distribution by applying
the spatial habitat-selection model and habitat-abundance ratio to a new area
(Boyce and McDonald 1999; Johnson and Seip 2008). It was this approach that
Mladenoff and coworkers used successfully to predict the distribution and abun-
dance of the recovering wolf populations in the Great Lakes region of the United
States (Mladenoff et al. 1995, 1999; Mladenoff and Sickley 1998). It was also used
to predict the numbers and distribution of grizzly bears in the Selway–Bitterroot
ecosystem following potential reintroduction (Boyce and Waller 2003); the grizzly
bear distribution and abundance in the Parsnip river area of Northern British
Columbia (Ciarniello et al. 2007); recolonization habitats and population sizes of
recolonizing Amur tigers expanding into NE China from the Russian Far East (Li
et al. 2009; Box 10.2); and potential habitat and population size for critically
endangered Far Eastern leopards (P. pardus occidentalis, Hebblewhite et al. 2011).

The first step involves developing a habitat-selection model for a particular
carnivore species using (ideally) empirical data on the spatial locations of animals.
The model should, ideally, have high predictive capacity, good model fit, and be
hypothesis driven. One might use an RSF model to obtain the spatial prediction of
the relative or absolute probability of use (ŵðxÞi from Equation 10.1) for a
particular study area with a known or estimated population size of the focal species
(NÐ ). Next, the total predicted “habitat” required for each animal is estimated by
dividing the total amount of habitat across the study area by the population
size

P
ŵðxÞi=N̂ . This ratio then provides the habitat/population ratio that can

be used to extrapolate population size in adjacent areas, over time, and in different
study areas. The assumptions of this approach, which include (1) the right biotic
variables driving fitness have been measured, (2) similar selection patterns will exist
for spatial variables in both areas, (3) similar landscape configurations exist for
available spatial variables in both areas, (4) similar relationships between popula-
tion parameters and available habitat in both areas, and (5) resource selection
results in higher densities in those habitat types (or resource units) that are selected
by a species. These are valid assumptions for many theoretical patterns of habitat
selection (such as ideal free distribution, Fretwell and Lucas 1970). For an
endangered species caught in an ecological trap, where animals select habitats
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that lead to reduced fitness (Robertson and Hutto 2006), the positive correlation
between habitat selection density may break down. This potential problem leads us
to the second potential approach to link populations and habitats.

10.4.2 Combining habitat and spatial models of mortality risk

A second approach to link habitats to population sizes is to combine a habitat
model, such as the RSF designed above, with a complementary spatial mortality
model that allows biologists to relax the assumption that selection = density. This
approach entails identifying areas that are selected for high use by a species and
identifying areas that cause high mortality and then dividing the area into habitat
that can be classified as a sink (selected, high mortality) or source habitat (selected,
low mortality), and non-habitats.

In the first example of this approach, Nielsen et al. (2004) developed spatial
habitat models using resource selection functions for threatened grizzly bears in
Alberta, and combined this habitat model with a spatial model of mortality risk
for bears developed using spatial locations of mortalities, mostly human-caused
(Nielsen et al. 2004). They then combined the two spatial models to identify
primary sink and source habitats, secondary sink and source habitats, and non-
critical habitat for grizzly bears. This model was then spatially mapped for
grizzly bears on the landscape, identifying important sink areas for grizzly bears
(Figure 10.11). Sink habitats were closely associated with roads and timber harvest.
Therefore, Nielsen et al. (2006) recommended adopting access management
of industrial roads to increase security and habitat quality for grizzly bears
(Figure 10.11).

While Nielsen et al. (2004) used a large sample size of over 279 spatial
mortalities of grizzly bears over 25 years, other recent studies have developed
spatial models mortality risk for endangered species using fewer data and comple-
mentary approaches. For example, Falcucci et al. (2009) developed an integrated
occurrence–mortality model for the small brown bear (U. a. marsicanus) popula-
tion in central Italy to identify the “attractive sink” and source habitats. They
contrasted bear presence (2544 locations) and mortality data (37 locations) used as
proxies for demographic performance. Both Johnson et al. (2004) and Schwartz et
al. (2010) used a landscape-linked Cox-proportional hazards survival model with
telemetry locations of grizzly bears over 22 years in the Greater Yellowstone
Ecosystem and with 63 grizzly bear mortalities to develop spatial mortality risk
models. More carnivore ecologists should use these methods to combine risk and
habitat models to define source-sink habitats.
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10.4.3 Spatially explicit population models

A sophisticated approach to linking critical habitat to population size is to develop
spatially explicit, individually-based, population models (Morris and Doak 2002;
Carroll and Miquelle 2006; Linkie et al. 2006). Population viability analyses
(PVA) predict the probability of persistence of a population (Boyce et al. 2001;
Morris and Doak 2002). Although PVA models have faults (Caughley 1994), they
are useful for making relative comparisons between different management or
recovery scenarios for engendered species, and often help identify critical knowl-
edge gaps (Brook et al. 2000; Holmes et al. 2007). Making PVA spatially explicit
requires a link between populations and habitats. This link is most often made
using simulation models of realistic movements and survival of individual animals
on a specific landscape. Spatial PVA accommodate the landscape context, habitat
fragmentation, and meta-population structure (Carroll et al. 2003b; Linkie et al.
2006). The cost of these models, of course, is the requirement of large datasets and
the difficulty of parameterizing all required inputs with empirical data. The models
present a tradeoff of parsimony versus complexity. Spatially explicit population
viability models have been used for tigers (Carroll et al. 2003a; Linkie et al. 2006),
wolves (Carroll et al. 2003b), and have even included the effects of climate change
for Canada lynxes (Lynx canadensis) and American martens (Martes americana) in
the eastern US (Carroll 2007).
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Fig. 10.11 Predicted habitat states for west-central Alberta based on combining habitat
quality from an RSF model and spatial mortality risk predictions. Source: Nielsen et al.
(2006).
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Alternatively, spatially explicit, individual-based models of space use can be used
to model population dynamics based directly on landscape characteristics and
estimates of basic behavioral parameters. Mitchell and Powell (2004) presented
optimality models for home ranges that maximized the benefits of spatially
distributed resources over costs of repeatedly visiting resource-bearing patches.
These models predicted home ranges and their distribution on a landscape under
resource-maximizing and area and minimizing strategies. The resulting spatial
distribution of home ranges depended on spatial characteristics of resources and
the extent to which animals reduced the value of resources (i.e. resource depres-
sion) to conspecifics through consumption or protection. Simulating home ranges
on a landscape using these models produced predicted distributions of animals that
ranged from ideal free to ideal despotic (Fretwell and Lucas 1970; Fretwell 1972),
depending on the degree of resource depression.

Using these spatially explicit, individual-based, home-range models, Mitchell
and Powell (2007) showed that black bears living in the southern Appalachian
Mountains generally pursued an area-minimizing strategy for selecting their home
ranges, with slight levels of resource depression (e.g. Box 10.1, Figure 10.5). This
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Fig. 10.12 Change in area of simulated, area-minimizing home-ranges for female black
bears in the Pisgah Bear Sanctuary, North Carolina, as a population increases. Simula-
tions were of sequentially established optimal home ranges constructed under an area-
minimizing strategy with moderate resource thresholds and low resource depression
(Mitchell and Powell 2007), and based on the food component of a habitat suitability
index (HSI) for bears in the Southern Appalachians. As more home ranges are added to
the sanctuary, area of home ranges increased in size, suggesting that area of home ranges
may be useful for understanding population size (N). Eventually, no new area-minimizing
home ranges could be added to the sanctuary, resulting in a maximum of 52, the
estimated carrying capacity (K) for the Pisgah Bear Sanctuary. Source: Mitchell and
Powell (2011).
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finding has very strong ecological implications because resource depression sets a
maximum number of home ranges a landscape can support. Thus, home-range
models such as these can be used to estimate both the distribution of animals and
the carrying capacity (K ) of a landscape for those animals, without knowing their
abundance. Accordingly, Mitchell and Powell (2011) estimated carrying capacity
for adult female bears, KAF, in their study site by sequentially adding simulated,
area-minimizing home-ranges to a resource landscape comprising the food compo-
nent of a habitat suitability index (HSI, Zimmerman 1992; Mitchell et al. 2002;
Box 10.1) and using behavioral parameters found best to predict home ranges for
adult females (Mitchell and Powell 2007). Simulated home-ranges increased in
area as the simulated population grew; the point at which no new home-ranges
could be added predicted that K AF was approximately 52 (Figure 10.12). Mitchell
and Powell (2011) then estimated carrying capacity for all bears (all age and sex
classes except cubs), K, by adjusting K AF for the proportion of adult females in the
population, yielding K = 126 bears. For the 235-km2 study site, density at carrying
capacity was 0.54 bears/km2, which is only slightly higher than the upper limit of
density estimated for black bears living in the nearby and fully protected Great
Smoky Mountains National Park (0.35 bears/km2; McLean and Pelton 1994).

10.5 Conclusions

Research that provides the most rigorous understanding of carnivore habitat
scientifically possible is based on asking good questions first and foremost, hy-
pothesizing good answers to these questions based on both theory and empirical
evidence, testing the hypotheses by comparing their predictions to empirical data
using the best analytical approaches available, and linking selection behavior
directly to population consequences. This is a demanding process at all levels:
asking good questions is difficult, developing good hypotheses is difficult, master-
ing rapidly evolving, highly complex analytical techniques is difficult, bridging
from behavior to demography is difficult. Pressing management and conservation
needs facing carnivores rarely allow the luxury of easier approaches that provide
weak to poor inferences, limited scope and generality, and ultimately uncertain
applicability (at best).
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